100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Business Intelligence Notes and Summary $7.03
Add to cart

Summary

Business Intelligence Notes and Summary

 10 purchases
  • Course
  • Institution
  • Book

Comprehensive Summary and Notes of the Business Intelligence 1 course at Fontys. Includes a clickable table of contents. The course is guided along "Business Intelligence, Analytics and Data Science" by Sharda, Delen, Turban, King

Preview 4 out of 32  pages

  • No
  • Basics of business intelligence sections
  • April 10, 2020
  • 32
  • 2019/2020
  • Summary
avatar-seller
Contents
Business Intelligence: .............................................................................................................................................................................................. 4
Changing Business Environments ............................................................................................................................................................................ 4
Evolution of BI ......................................................................................................................................................................................................... 4
Transaction Processing Versus Analytic Processing ................................................................................................................................................. 4
Investing in BI .......................................................................................................................................................................................................... 4
Real-Time BI ............................................................................................................................................................................................................ 5
Analytics .................................................................................................................................................................................................................. 5
Prescriptive Analytics ......................................................................................................................................................................................... 5
Examples: Analytics in Retail Value Chain ............................................................................................................................................................... 6
Start: Vendors .................................................................................................................................................................................................... 6
Final: Customers ................................................................................................................................................................................................ 6
Inventory Optimization ...................................................................................................................................................................................... 6
Price Elasticity .................................................................................................................................................................................................... 6
Big Data ................................................................................................................................................................................................................... 6
Data Continuum ................................................................................................................................................................................................. 7
Taxonomy of data – Structured vs Unstructured ............................................................................................................................................... 7
Data Preprocessing ............................................................................................................................................................................................ 7
START: Raw data sources.............................................................................................................................................................................. 7
1) Data Consolidation ............................................................................................................................................................................ 7
2) Data Cleaning..................................................................................................................................................................................... 7
3) Data Transformation.......................................................................................................................................................................... 7
4) Data Reduction .................................................................................................................................................................................. 7
OUTCOME: Well-Formed Data ..................................................................................................................................................................... 7
Business Reporting .................................................................................................................................................................................................. 8
Standard Reporting ............................................................................................................................................................................................ 8
Ad-hoc Reporting ............................................................................................................................................................................................... 8
Process Business Reporting................................................................................................................................................................................ 8
Types of Business Reports.................................................................................................................................................................................. 8
Metric management reports ........................................................................................................................................................................ 8
Dashboard-Type Reports .............................................................................................................................................................................. 8
Balanced Scorecard-Type Reports ................................................................................................................................................................ 8
Data Visualization .................................................................................................................................................................................................... 8
Chart Types ........................................................................................................................................................................................................ 8
Market of BI & Visualization .............................................................................................................................................................................. 9
Visual Analytics .................................................................................................................................................................................................. 9
Dashboards ........................................................................................................................................................................................................ 9
Data Warehouse...................................................................................................................................................................................................... 9
Characteristics of Data Warehouses .................................................................................................................................................................. 9
Data Warehouse Development .......................................................................................................................................................................... 9
1) Inmon Model: EDW approach (top-down .......................................................................................................................................... 9
2) Kimball Mode: DM approach (bottom-top) ....................................................................................................................................... 9
3) Hosted DW ........................................................................................................................................................................................ 9
Data Warehouse Architecture ......................................................................................................................................................................... 10



1

, Data Mart......................................................................................................................................................................................................... 10
1) Dependent data mart ............................................................................................................................................................................ 10
2) Independent data mart ......................................................................................................................................................................... 10
Data Warehouse architecture decision ............................................................................................................................................................ 10
End-user tasks ....................................................................................................................................................................................................... 10
Organization change and data warehouses ..................................................................................................................................................... 11
Data Integration ......................................................................................................................................................................................... 11
ETL Process = Extract Transform Load ........................................................................................................................................................ 11
Purchasing an ETL Tool ............................................................................................................................................................................... 11
Multidimensionality in DW .............................................................................................................................................................................. 11
4 Dimensions: ............................................................................................................................................................................................. 11
Analysis of Data in Data Warehouse (OLTP vs OLAP) ....................................................................................................................................... 11
OLAP Operations: ....................................................................................................................................................................................... 12
Massive DW and Scalability ............................................................................................................................................................................. 12
Data Warehouse Security ................................................................................................................................................................................ 12
Data Warehouse Location choice .................................................................................................................................................................... 12
Future of Data Warehouse .............................................................................................................................................................................. 12
Data Lake ......................................................................................................................................................................................................... 12
Performance Management ................................................................................................................................................................................... 13
Three key components of performance management..................................................................................................................................... 13
Closed-Loop Process to optimize Business Performance ...................................................................................................................................... 13
1) Strategize (Where do we want to go?) ........................................................................................................................................................ 13
Levels of strategy: ....................................................................................................................................................................................... 13
Strategic planning common tasks: .............................................................................................................................................................. 14
Evaluate strategy ........................................................................................................................................................................................ 14
2) Plan (How do we get there?) ....................................................................................................................................................................... 15
3) Monitor/Analyze (How are we doing?) ........................................................................................................................................................ 15
4) Act and Adjust (What do we need to do differently?) ................................................................................................................................. 15
Performance Measurement .................................................................................................................................................................................. 16
KPIs and Operational Metrics........................................................................................................................................................................... 16
Performance Management System ................................................................................................................................................................. 16
Balanced Scorecard.......................................................................................................................................................................................... 17
Data Mining (Knowledge Discovery) ..................................................................................................................................................................... 17
How data mining works ................................................................................................................................................................................... 17
Data Mining Methods ...................................................................................................................................................................................... 18
1) Classification .................................................................................................................................................................................... 19
2) Clustering (Cluster Analysis) ............................................................................................................................................................ 19
3) Association Rule Mining (market-based analysis) ............................................................................................................................ 19
Data Mining Applications ................................................................................................................................................................................. 20
Text Analysis.......................................................................................................................................................................................................... 21
Text mining ...................................................................................................................................................................................................... 21
Text mining Process .................................................................................................................................................................................... 22
Natural Language Processing (NLP).................................................................................................................................................................. 22
Sentiment Analysis ................................................................................................................................................................................................ 23
Web Mining (Web Data Mining)............................................................................................................................................................................ 23


2

, Content/Structure/Web Usage Mining ............................................................................................................................................................ 23
Metrics ....................................................................................................................................................................................................... 24
Social Analytics (Social Network Analysis) ............................................................................................................................................................. 24
Social -vs- Industrial Media .............................................................................................................................................................................. 25
Use of SM over time ........................................................................................................................................................................................ 25
Prescriptive Analytics ............................................................................................................................................................................................ 25
Model-based decision making ......................................................................................................................................................................... 26
Levels of Risk in Decision Making ..................................................................................................................................................................... 27
How to Model Decisions .................................................................................................................................................................................. 27
Multiple Goals .................................................................................................................................................................................................. 27
Big Data ................................................................................................................................................................................................................. 29
Trends in BI ........................................................................................................................................................................................................... 30
IoT .................................................................................................................................................................................................................... 30
Cloud Computing ............................................................................................................................................................................................. 31
Location-Based Analytics ................................................................................................................................................................................. 31
Ethical Considerations ........................................................................................................................................................................................... 32




3

, Business Intelligence:
• Global Term
• Decision making
o Based on information tech

Changing Business Environments
• Increased capabilities
o Hardware,
o Software
o Network
• Group Communication and collaboration
• Data management
o Data warehouses
o Big Data
• Analytical Support
• Knowledge management
• Anywhere, anytime



Evolution of BI




Transaction Processing Versus Analytic Processing
• (Online) Transaction Processing (OLTP)
• Operational databases
• ERP, SCM, CRM, …
• Goal: data capture
• (Online) Analytical Processing (OLAP)
• Data warehouses
• Goal: decision support
• What is the relationship between OLTP and OLAP?



Investing in BI
• Strategic decision
o Cost-Benefit Analysis
o Make or buy
o Security?
• Protection of info and privacy
o Integration to other systems and Applications

• Many companies have dedicated department
o Manages how BI is linked go overall strategy
o Enables interaction between potential business users
o Shares practices and trains users
o Defines standards


4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller lennartfuchs. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.03. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

66781 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.03  10x  sold
  • (0)
Add to cart
Added