100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting methoden in biomedisch onderzoek 3 : 15/20 behaald

Rating
-
Sold
2
Pages
129
Uploaded on
17-12-2024
Written in
2024/2025

bevat alle informatie van op de powerpoint + eigen notities aangevuld + goede indeling qua hoofdtitels en tussentitels voor structuur. Op einde van elk Hoofdstuk staat een witte pagina om het volgende hoofdstuk op een ONeven pagina te laten beginnen voor overzicht.

Show more Read less
Institution
Module

















Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
December 17, 2024
Number of pages
129
Written in
2024/2025
Type
Summary

Subjects

Content preview

INLEIDING (1)
Methoden in biomedisch onderzoek



Kernthema’s van methoden 3

Van één (enkele) molecule(n) naar omics
▪ Next generation sequencing
▪ Massive parallel sequencing
▪ Nanopore sequencing

Multi-omics = data bij elkaar brengen om een compleet beeld te krijgen




Van ‘bulk’ naar ‘single cell’

▪ Bulk analyse = weefsel nemen, in mixer steken en zo alle klassen van moleculen nagaan
 Output is gemiddelde van volledige weefsel
└ Vb. spatiale transcriptomics om na te gaan welk transcript op welke plaats & zo
verschillende celtypes zien

▪ Single cell analyse = cellen uit weefsel halen en omics doen op single cellen
 Ruimtelijke informatie verloren
└ Vb. single cell transcriptomics om cellen uit elkaar te halen en te mappen

Interactomics = interacties tussen moleculen nagaan

Pathway analyse en fluxomics
▪ Via merkersubstraat (vb. C13 gemerkt glucose) volgen wat er gebeurt & zien hoe het
metabolisme is veranderd in een bepaalde ziekte

Genmodulatie = aantonen dat gen rol speelt in ziekte door gen te veranderen




1

,2

, DNA (2)


A: DNA SEQUENTIEBEPALING

methoden:

1) first-generation sequencing
o bulk sequencen
o Sanger, cloneren & elektroforese
o gouden standaard voor kleine projecten

2) second- / next-generation sequencing
o massief parallel sequencen ( miljoenen tegelijk)
o via clonaal geamplificeerde DNA moleculen
o bv ilumina

3) third- / next-next-generation sequencing
o individuele DNA moleculen sequencen zonder eerst amplificeren
o bv nanopore

➔ evolutie in capaciteit, snelheid en kosten


toepassingen:

▪ de novo genoom sequentiebepaling
 ongekende genomen, nieuwe organismen ( bv Sars-CoV-2)
 gedeeltelijk of volledig
 in stukken gebeuren, dan kijken naar overlaps & vervolgens aan elkaar hangen
 bv: humaan genoom project

▪ resequencing
 mutaties = zeldzame veranderingen gelinkt aan ziektes
 verschillen tussen individuen (SNPs)
 referentiegenoom voor nieuwe individuen
 gekend genoom van organisme

▪ sequentiebepaling als teller
 aantallen DNA of RNA moleculen bepalen als teller
 weten hoe vaak bepaald gen tot expressie komt in bepaald weefsel
 RNAseq, ChiPseq,…




3

,1: 1ste generatie sequentiebepaling

Maxam & Gilbert


principe:

▪ differentiële chemische klieving van nucleïnezuren in 4 verschillende reacties
▪ dan scheiding op gel volgens grootte
▪ dan visualisatie via autoradiografie


 korte fragmenten
 niet helemaal specifiek

werking:
analyse van de radio-actieve bandjes met de korte fragmentjes onderaan en de lange bovenaan.
Letter G boven de rij omdat enkel daar de bandjes een kleur geven. A & G omdat ze op die positie een
kleur geven.




4

,Sanger sequencing= dideoxy-keten terminatiemethode


principe:

▪ template/matrijs
: gefragmenteerd genoom geamplificeerd door kloneren / specifiek fragment geamplificeerd
door PCR
▪ polymerase + primer + mengsel 4 dNTPs + ddNTPs, elk met ander fluorescent label
▪ reactie loopt na inbouwen dNTP & stopt na inbouwen ddNTP
▪ !! verhouding dNTPs/ddNTPs
▪ Scheiden strengen: gel of capillair : elektroferogram
▪ 1 streng per keer aflezen
▪ 2 reacties voor betrouwbaarheid (FW en RV primer) = beide richtingen aflezen

 beperkt tot 500 bp
 moeite met herhalingen

Groen template: via polymerase maak je nieuwe DNA dat vertrekt vanuit een primer.
4dNTP’s & kleine hoeveelheid ddNTP’s. waarom dd? DNA is altijd deoxy ( zuurstof minder). Di omdat
er een H staat i.p.v. een OH. Aan de O kan er niets gebonden worden waardoor de reactie wel door kan
gaan.




▪ kwaliteitsscores = Phred score
o -10log10(P)
o 1ste 30 bp niet afleesbaar
o Meestal 500-700 bp goede sequentie afleesbaar
o P = probabiliteit van foutieve base call
o als Q=30 ⇒ 1/1000 kans op een fout



5

,verwezenlijkingen met 1ste generation sequencing:

a) human genome project (HGP)
~ grootste multinationale biologisch project ooit
~ stalen meerdere anonieme individuen
~ methode: hierarchical shotgun sequencing met Sanger methode
~ clones in YACs, BACs, P1s en cosmiden



1) mapping & fragmentatie
2) automatische sample bereiding & sequentiebepaling
3) elke 24u publieke vrijgave sequenties
4) draft sequentie 2001
5) finale sequentie 2003

b) human genome sequencing door Celera
~ Door Craig Venter
~ Stalen van 5 individuen
~ Methode: whole genome shotgun sequencing
~ Draft sequentie 2001

Enorme impact op
▪ Technologische ontwikkeling van sequencing
▪ Grote ontwikkeling van bioinformatica
▪ Visie op delen van data
▪ Andere methoden omdat nu de (bijna) volledige sequentie beschikbaar is
▪ Biologische kennis

Nieuwe uitdagingen
▪ Volledige sequentie (telomeer tot telomeer)
▪ Meer genomen sequencen van meerdere species
▪ Meer individuele humane sequenties
▪ Persoonlijke genoomsequentie van iedereen

Enorme mogelijkheden voor “personalized precision medicine”
▪ Kennis van DNA volgorde en SNPs → diagnose, prognose, preventie
▪ Farmacogenomics verklaart waarom en voorspelt of bepaalde individuen goed/slecht reageren
op geneesmiddelen
▪ Inzicht in complexe multifactoriële aandoeningen
▪ Therapie op maat

 Probleem met standaard Sanger sequencing: throughput en kosten → andere technologie
nodig met hoge capaciteit en lage kosten




6

,2: 2de generatie sequentiebepaling: short-read next-generation sequencing

doel:

▪ veel hogere throughput aan veel lagere kosten ⇒ massale DNA sequentiebepaling mogelijk
▪ richtdoel: 1 humaan genoom op toestel per dag voor < 1000USD

Voordelen Nadelen
Snelheid Read lengte 35-700 bp (<sanger)
Kost Throughput geeft grote absolute hoeveelheid fouten
Accuraatheid: 85 – 99.9%
Weinig input nodig


Drie technieken van sequencing:

1) WGS whole genome sequencing
2) WES whole exome sequencing
3) targetted sequencing (specifieke gewenste regio’s)

Ontwikkeling van SGS met 3 pijlers:

▪ parallelle detectie = massieve parallel sequencing
 cluster/ polony = kopieën van DNA template die ruimtelijk dicht bij elkaar liggen
 klonale in vitro amplificatie van template
: duizenden-milj kkopieën van DNA template per cluster
 multiplexing = veel clusters tegelijk ( vs 1 template/reactie)
▪ miniaturisatie van reacties
▪ integratie van het proces
 directe detectie (<> scheiding via gel)
 1 proces i.p.v. verschillende stappen

Gebaseerd op 4 basisstappen:

STAP 1: aanmaak next-generation sequencing DNA library

library = fragmentenbank = verzameling te sequencen templates
types DNA library:
~ WGS
~ WES
~ targeted sequencing
~ amplicon sequencing
~ minimum bias en voldoende complexiteit (voldoende verschillende fragmenten)




7

,kwaliteitscontrole input DNA:
▪ hoeveelheid en concentratie
▪ zuiverheid bv spectrofotometrie A260/280 en A260/230 ratio
▪ integriteit bv capillaire elektroforese

stappen:
1) fragmentatie
 fysisch: nebulizatie, sonicatie, acoustic shearing
 enzymatisch: DNAse, fragmentase

2) eventueel target aanrijking

3) end repair
 blunt ends maken:
o T4 DNA polymerase: afknippen fragmenten
o Klenow fragmenten : aanvullen van fragmenten
 5’ uiteinde fosforyleren door T4 polynucleotide kinase
o Fosforylatie ! voor adaptoren vast te hangen
 eventueel non-template A aan 3’ uiteinde door Taq polymerase

4) ligatie adaptors
 adaptor = stukje gekende sequentie, bindt & sequencing primer + barcode
 ligatie met uiteinden: sticky end met 3’A overhang of blunt-end ( A bindt aan T)
 om bank te kunnen amplificeren via PCR & zodanig dat sequencing primers
kunnen binden




5) eventueel tagmentatie
 fragmenteren + adaptors aanhechten in 1 stap
 transposase enzym knipt en voegt adaptors toe
 PCR cycli met toevoeging extra barcode aan adaptor




8

,6) size selection
 doel: gewenste lengte insert selecteren
 vroeger: agarose gel elektroforese, gewenste lengte uitsnijden en opzuiveren
 nieuw: magnetische beads aan DNA & verhouding DNA/beads geeft lengte:
o 1-zijdig of 2-zijdig: te lange fragmenten uitselecteren & wegfilteren
o 1-zijdig: korte fragmenten : zoals adapter-dimeren wegfilteren
o 2-zijdig: kleine & grote fragmenten




7) Kwaliteitscontrole
 gewenste lengte en concentratie inserts controleren
 capillaire elektroforese




9

, STAP 2: klonale in vitro amplificatie

 100-200 miljoen clusters van telkens 1000 kopieën van zelfde DNA template
 Doel: simultaan maar gescheiden, amplificatie van miljoenen fragmenten

verschillende methoden om scheiding tussen clusters te behouden

Emulsie PCR Solid-phase template walking ‘wildfire’
Bv: 454 Bv SOLiD
Beads met nt complementair aan adaptoren Oppervlak met nt complementair adaptoren
Toevoeging PCR reagentia Fragmentatie laten binden
Olie-emulsie maken: beads van elkaar scheiden door Partiële denaturatie (T lichtjes los)
olie : vrij uiteinden (adaptor) ‘wandelen’ lokaal & binden
In elke microdruppel: 1 bead met 1 fragment op naburige primer
On-bead amplificatie in emulsie Amplificatie: 1000den lokale clusters
Solid-phase bridge amplificatie Rolling-circle amplificatie in oplossing
Bv ilumina Bv complete genomics
Vaste opp met nt complementair adaptoren 4 adaptoren (rood) ligeren aan fragment
Fragmenten vormen lokaal bruggetje via brownse Circulaire DNA template via ligatie
beweging Knippen downstream met type III endonuclease
PCR 2e set adaptoren: ligatie, circiuarisatie & knippen
Clusters (polonies) = 1000den kopieën van zelfde Herhalen met nog 2 andere adaptoren
DNA molecule gebonden op 1-2 microm spot Rolling circle amplificatie
Clusters = nanoballs = concatemeren = lange DNA
moleculen met meerdere kopieën van template na
elkaar
Hybridisatie op vaste drager




10

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
charlotteallaert1 Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
64
Member since
3 year
Number of followers
5
Documents
19
Last sold
2 days ago

4.2

5 reviews

5
2
4
2
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions