100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary ATPL - 021 - AGK $9.84
Add to cart

Summary

Summary ATPL - 021 - AGK

 1 view  0 purchase
  • Course
  • Institution

ATPL - 021 - AGK refers to a section of the Airline Pilot License (ATPL) program that focuses on the study of aircraft systems and general knowledge (AGK). Here are the key points that could be summarized in this area: Aircraft structures: Understanding of the main components, such as wings, fus...

[Show more]

Preview 4 out of 37  pages

  • December 19, 2024
  • 37
  • 2023/2024
  • Summary
avatar-seller
SYSTEMS
1

AIRCRAFT
STRUCTURES
&
AERODYNAMIC
LIMITATIONS


STRESSES
TENSILE
STRENGTH
BEAM
MOMENTS





• Load
per
cross
sectional
area.
• Even
more
stretching
after
the
elastic
limit
• Moment
=
Force
x
Distance


will
cause
the
material
to
neck
(get
thinner).
• Max
bending
moment
on
a
wing
occurs
at

• Tension
(tensile
stress)

EG/
fuselage
• Stress
increases
since
the
cross
sectional
the
root
due
to
furthest
distance
from
load.

• Compression

EG/
top
of
wing
area
reduces.
• Support
is
thicker
and
end
is
thinner

thus

• Shear
(cutting)

EG/
wing
root
bolts
• Just
before
failure,
the
material
has
saving
weight.

• Torsion
(twisting)

maximum
strength
per
unit
of
cross

• Bending

Compression
+
Tension
+
Shear
sectional
area.
This
is
the
tensile
strength.

• Buckling

Uneven
compressive
load
STRUTS



TYPES
OF
LOADS
BASIC
STRUCTURAL
MEMBERS
• Struts
are
designed
to
withstand
mainly


compressive
loads.

• Static

Continually
applied,
no
change.
• Tend
to
buckle
under
load
before
failure.

• Dynamic

Constantly
changes
BEAMS

• Normally
hollow.

• Cyclic

Continually
applied
and
removed.


• They
can
be
either
simply
supported
(both

ends)
or
be
cantilever
(one
end
only).
TIE

STRAINS

• They
are
subject
to
bending
with
one
side
in




tension
and
the
other
in
compression.
• Ties
are
designed
mainly
to
withstand

• Strain
is
deformation
due
to
stress.

• Beams
in
aircraft
are
usually
an
I
/
H
section
tensile
loads.

• Initially
proportional
to
stress
and
will

and
the
same
strength
as
a
whole
beam
is
• Normally
constructed
of
solid
rod
or
a
wire

return
to
original
shape.

possible
due
to
interaction
of
compression
of
relatively
small
diameter.

• Plastic
deformation
-­‐
Once
elastic
limit
is
and
tension
(but
it
is
of
course
lighter).

exceeded,
stretching
will
continue
but
will

not
return
to
original.


, SYSTEMS
1

AIRCRAFT
STRUCTURES
&
AERODYNAMIC
LIMITATIONS


THE
FUSELAGE
SEMI
-­‐
MONOCOQUE
FUSELAGE
FUSELAGE
TYPES




• Majority
of
stress
dissipated
by
internal
• Circular

THE
FUSELAGE
components
and
very
little
by
the
skin.
o Good
for
containing
hoop
stress


• Gives
a
strong,
relatively
light
structure
with
o Lowest
amount
of
skin
drag
for
volume

• Accommodates
crew
and
payload
lots
of
space.
o Bad
for
space

• Supports
other
components
of
the
aircraft.
• Longerons

Longitudinal
(Main
stresses)
• Rectangular

• Subject
to
a
number
of
stresses
in
flight:
• Frames

Vertical
(Stress
+
gives
rigidity)
o Max
use
of
space

o Nose
and
tail
droop
down
causing
• Stringers

Support
the
skin
o Bad
for
pressurization

tension
on
top
and
compression
• Bulkheads

Airtight
for
pressurisation
o Used
in
light
a/c
and
non
pressurised

underneath.
transporters.

o Compounded
by
tail
exerting
downforce
• Oval

o A380
Design

o Good
use
of
space

TRUSS
TYPE
FUSELAGE
o Best
compromise
for
pressurisation


o Requires
very
strong
floor
beams.

• Frame
supports
the
load,
skin
is
merely
to
o Double
bubble
section
can
be
used
to

cover
and
reduce
drag.
reduce
total
tension
on
each
frame.

• Longerons
run
longitudinally
and
provide

the
main
load
bearing.

• Supported
both
vertically,
horizontally
and
PRIMARY
VS
SECONDARY
STRUCTURE

diagonally
with
web
members
to
give


complete
rigidity.
• Primary
-­‐
A
critical
load-­‐bearing
structure.

• No
space
for
payload
so
mainly
on
light
• Secondary

Structural
elements
mainly
to

aircraft.
HOOP
STRESS
provide
enhanced
aerodynamics.



• Large
forces
which
push
the
fuselage

MONOCOQUE
FUSELAGE
outwards
as
a
result
of
pressurisation.


• Tension
in
frames.

• Skin
takes
all
the
load.
• Bending
in
longerons,
stringers
and
skin.

• No
internal
load
bearing
structure
although

former
rings
sometimes
fitted
to
give

shape.

• No
ability
to
add
doors
etc
otherwise
ability

of
skin
to
withstand
stress
is
destroyed.


, SYSTEMS
1

AIRCRAFT
STRUCTURES
&
AERODYNAMIC
LIMITATIONS


THE
WINGS
/
MAINPLANE
TORSION
BOX
THE
TAIL




• Supporting
the
twisting
motion
of
lift
of
the

THE
WINGS
wings.
TAIL
SECTION


• Links
the
spars,
skins
and
ribs.


• Semi-­‐monocoque
design
• One
in
each
wing
plus
a
centre
spar
to
link
• Semi-­‐monocoque
design

• Spars

Withstand
bending
and
torsional
the
two
wings.

loads
• Wing
torsion
can
result
from
positive
sweep

• Ribs

Gives
shape.
Holes
make
it
stronger

and
lighter.

• Stringers

Support
the
skin.

• Centre
spar
can
also
be
included
to

supported
undercarriage
etc.





SANDWICH
TYPE
CONSTRUCTION
HONEYCOMB
CONSTRUCTION







, SYSTEMS
1

AIRCRAFT
STRUCTURES
&
AERODYNAMIC
LIMITATIONS


WING
BENDING
ON
GROUND
AIRCRAFT
STRUCTURAL
MATERIALS
ATTACHMENT
METHODS





• Wings
and
undercarriage
on
ground
are
• Aluminum
Alloy
• Riveting

subject
to
heavy
loads
so
the
Maximum
o Raw
aluminum
lacks
strength
+
rigidity
o Can
be
flush
or
round
headed

Ramp
Mass
is
set
to
limit
stress.
o Mixed
with
4-­‐6%
copper
=
Duralumin
o Flush
type
is
more
aerodynamic
but

o Good
conductor
and
improved
strength
more
expensive.

o Difficult
to
weld
&
good
thermal
o Cracks
can
originate
at
rivet
points.

WING
BENDING
IN
FLIGHT
conductivity
• Bolts


• Magnesium
Alloy
o Allows
for
separation
of
materials
when

• Lift
acts
to
bend
wings
upwards.
o Lightweight
but
lack
strength
and
are
required.

• Fuel
and
engines
help
to
reduce
bending.
brittle.
o Vibrations
can
cause
nuts
to
become

• The
greatest
bending
moment
at
the
wing
o Easily
moulded
into
complex
shapes
loose.
This
is
prevented
by
wire
locking.

root
occurs
with
high
fuselage
mass
and
o Used
in
gearbox
casing
and
wheel
rims
• Welding

zero
fuel
(wings
bending
up).
The

• Steel
o A
very
tough
bond
is
created.

maximum
zero
fuel
mass
is
therefore
set
o Bolts
etc
o Load
spread
over
a
large
area.

to
limit
stress.
o Carbon
added
to
improve
load
bearing
• Pinning

• The
leading
edge
is
subject
to
compression
o +
chromium
=
stainless
steel
o Good
for
attaching
components
that

then
tension
(from
root
to
tip)
• Titanium
experience
shear
stress.

o Very
resistance
to
high
temperatures
o Can
be
undone
at
a
later
date.

o Turbines
etc
• Adhesives





• Plastic
o Easy
to
use
and
can
bond
large
areas.

FUSELAGE
BENDING
IN
FLIGHT
o Easy
to
mould
but
has
poor
strength.
o Permanent
and
have
relatively
low


o Interiors
mechanical
strength.

• Bending
moment
around
fuselage
due
to
• Fibre
Reinforced
Plastics
(FRPs)

download
on
the
horizontal
stabiliser
to
o Layers
of
fibres
(glass,
Kevlar,
carbon)

counteract
the
lift-­‐weight
couple.
provide
the
strength
and
the
filler
gives

the
stiffness.

o CFRP
=
Carbon
Fibre

o KFRP
=
Kevlar

o GFRP
=
Glass

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller decarpentryaimeric. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.84. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52928 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.84
  • (0)
Add to cart
Added