100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
samenvatting wiskunde $8.06
Añadir al carrito

Resumen

samenvatting wiskunde

 0 veces vendidas
  • Grado
  • Institución

Het is een uitgebreide samenvatting van de theorie van de cursus aangevuld met theorie uit de powerpointslides muv van het hoofdstuk limieten. De samenvatting is geschreven in volgorde waarin de hoofdstukken behandeld zijn tijdens de hoorcolleges.

Vista previa 3 fuera de 29  páginas

  • 27 de diciembre de 2024
  • 29
  • 2024/2025
  • Resumen
avatar-seller
Hoofdstuk 3: Vergelijkingen
3.2. Lineaire vergelijking
 Lineaire vergelijking:
=vergelijking waarbij de onbekende voorkomt in de eerste graad
 Vorm: ax + b = 0
−b
 Één oplossing: x 1=
a
 Algemene regels:
 Zowel bij linker als rechterlid mag het zelfde getal worden
opgeteld/afgetrokken worden
 Zowel bij linkerlid als rechterlid mag met hetzelfde getal worden
vermenigvuldigd of door hetzelfde getal gedeeld, uitgezonderd 0!
 Het getal wijzigt van teken bij wisselen van lid bij optelling of
aftrekking en de bewerking verandert bij vermenigvuldiging en
deling
 Indien het antwoord strijdig is voor elke 𝑥∈ℝ, dan wordt de
oplossingsverzameling gezien als ledig en genoteerd als volgt: 𝑉=∅
 indien het antwoord geldig is voor elke 𝑥∈ℝ, dan wordt de
oplossingsverzameling genoteerd als volgt: 𝑉=ℝ




3.3. De vierkantsvergelijking of kwadratische
vergelijking
 vierkantsvergelijking/ kwadratische vergelijking:
=vergelijking waarbij de term met de hoogste graad van de tweede graad
is
 vorm: ax² + bx + c = 0
 discriminant: D = b² - 4ac

Discriminant # oplossingen Oplossing(en)
D>0 2 oplossingen −b+ √ D
V={ ,
2a
−b−√ D
}
2a

D=0 1 dubbele oplossing −b
V={ }
2a

D<0 Geen oplossingen V=∅

 basisregel:
 √ x 2 = |x|
x kan dus zowel positief als negatief zijn

,  Som- en product regel:
 D > 0 en x 1 ≠ x 2
−b
 Som: = x 1+ x2
a
c
 Product: = x 1∗x 2
a

 Ontbinden in factoren:

ax² + bx + c (x + x 1 ¿ (x + x 2 ¿
ax² - bx - c of ax² + bx (x - x 1 ¿ (x + x 2 ¿
-c
ax² - bx + c (x - x 1 ¿ (x - x 2 ¿

 Merkwaardige producten:

(a + b)² a² + 2ab + b²
(a – b)² a² - 2ab + b²
(a + b)² (a – b)² a² - b²
(a + b)³ a³ + 3a²b + 3ab² + b³
(a – b)³ a³ - 3a²b + 3ab² - b³
(a + b)(a² - 2ab + a³ + b³
b²)
(a – b)(a² + 2ab – a³ - b³
b²)
(a + b + c)² a² + b² + c² + 2ab +
2bc + 2ac




3.4. Bikwadratische vergelijking
 Bikwadratische vergelijking:
 Vorm: a x 4 +b x 2 +c of a x 6 +b x 3+ c
 Herleiden tot vierkantsvergelijking door substitutie: t = x²



3.5. Hogere-graadsvergelijkingen:
 Hogere-graadsvergelijking:
 Vorm V(x) = 0 met V(x) veelterm van graad 3 of hoger
 Linkerlid ontbinden in factoren
 Regel van Horner:
 Verkorte wijze van euclidische staartdeling
 Algemene methode: mogelijkst restterm
 Volgens criterium deelbaarheid: geen restterm
 Functie van hogere graad: T(x)
 Deler: N(x) = x – a
 Quotiënt veelterm: Q(x)
 Restterm: R(x)

,  Noteren: T(x) = (x – a) * Q(x) + R(x)
 Indien restterm nul is, is a een nulpunt van de functie




3.6. Rationale vergelijkingen
 Rationale vergelijking:
T 1 (x ) T 2 ( x )
 Vorm: =
N 1 (x) N 2 ( x)
 Bestaansvoorwaarde: N 2 ( x ) ≠ 0
 Wegwerken noemers zodaning dat we hogere-graadsvergelijking
bekomen




3.7. Irrationale vergelijkingen
 Irrationale vergelijking:
=vergelijking waarbij de onbekende onder een wortelteken staat
 Wegwerken door bede leden tot een bepaalde macht te verheffen
 Bij evenmachtswortel: bestaansvoorwaarde dat alles onder te wortel
groter dan of gelijk aan 0 moet zijn
 √ n n
a=B { A=B als n oneven en A=B n en A ≥ 0 als n even
 Soms kwadrateringsvoorwaarde: alles wat gelijk is aan een
vierkantswortel moet positief zijn




3.8. Eigenschappen ongelijkheden in één
onbekende
 Eigenschap 1:
=worden beide leden van een ongelijkheid met eenzelfde positief getal
vermenigvuldigd of gedeeld wordt een ongelijkheid in de zelfde zin
bekomen
 Eigenschap 2:
=worden beide leden van ongelijkheid met eenzelfde negatief getal
vermenigvuldigd wordt een ongelijkheid in tegengestelde zin bekomen
 Eigenschap 3:
=wordt in beide leden van een ongelijkheid eenzelfde getal opgeteld of
afgetrokken, dan wordt een ongelijkheid in zelfde zin bekomen
 Bijzondere gevallen:

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller vertentencaitlin. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $8.06. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


$8.06
  • (0)
Añadir al carrito
Añadido