1. Functions of 1 variable (H4) ..................................................................................................16
Find the domain. ............................................................................................................................ 17
Find the range. (R=Range) ............................................................................................................... 20
Graph of a function ........................................................................................................................ 22
Working with polynomials .............................................................................................................. 24
Cubic function:(EXAM) ............................................................................................................... 24
Rational function: ...................................................................................................................... 26
Factor for polynomials. .............................................................................................................. 27
Polynomials division!!! OPGAVE WEEKLY ASSIGNMENT boven EN MIDTERM onder! ....................... 28
Master the EXP() function !!!, Master the LN Function!!!! (EXAM) ........................................................ 30
Inverse functions! .......................................................................................................................... 33
Know how the standard graphs look like! ......................................................................................... 37
2. Differentiation of a Function F(X) ..........................................................................................38
Definition (EXAM) ........................................................................................................................... 38
Learn from looking at the first interval. ............................................................................................. 40
First derivative & second derivative: (EXAM) ..................................................................................... 42
Quotient rule: ............................................................................................................................ 44
Product rule: F(X)=F(X) X G(X) -> F’X=F’(X) X G(X) + F(X) X G’(X)...................................................... 45
Chain rule: F(x)-F(G(X))-> F’(x)=F’(GX(x)) X G’(X) ........................................................................... 45
Convex or concave? (EXAM) ....................................................................................................... 47
Rules for differentiation .................................................................................................................. 50
EXP(x) and LN (x) ............................................................................................................................ 53
Chain rule ..................................................................................................................................... 54
Limits! .........................................................................................................................................58
Limits at infinity: EXAMEN !!!!!! ........................................................................................................ 59
,Basic math: (chapter 1-3)
Basic 1: Logic
➔ Nes condition and sufficient condition
Overige regels:
Properties of power
- To the power of 0 -> Equals 1: -> 1/1=2
- 2x to the power 4: -> 2 to the power 4 and x to the power 4.
-
-
-
-
-
pag. 3
, Rules of algebra
Simpele rekenregels:
Voorbeelden:
Show that : f(x)=F(-x) -> LETTERLIJK doen wat er gevraagd wordt: voorbeeld van miderm:
Show that G(-x) = -g(x) -> G(-x) = -g(x) (formule was 3x^3 – 1/5x^5
- Voor de -g(x) -> zet een – voor de formule
- Voor de g(-x) -> zet een – voor de x en.
- Is nu gelijk.
What does this mean geometrically?
- What does this mean on the graps (= the same so (a,b) and (-a,-b) are on the
graph.
- Just try some point and give answer
Just an easy warm up question.
- 5+3=8, but 4+4 is also 8
- 4x4=16, but -4*-4 is also 16
- Something times 0 or – turns the equation negative so true, other way round not cause x
could be 3, so the y does not make a difference.
- True and True, cause: -2 X -2 X -2 = -8, so x needs to be 2 both ways round.
30 pm vast, 0.16 per minute, Cost=30+0.16x. plug in 102 and 126 on the ends, you
will get both answers.
pag. 4
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller wouterdebeste. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.95. You're not tied to anything after your purchase.