100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

ECB2METRIE Econometrics Full Summary

Puntuación
-
Vendido
-
Páginas
73
Subido en
22-01-2025
Escrito en
2023/2024

Personal Summary written on basis of lecture content

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
22 de enero de 2025
Archivo actualizado en
21 de abril de 2025
Número de páginas
73
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

ECB2METRIE – Econometrics
Utrecht University School of Economics
2023-2024 Academic Season

, Econometrics
Week 1: Overview of regression analysis and basic
properties/assumptions of OLS
Regression Analysis: Terminology




Population: purely theoretical



Sample: empirical counterpart




Where:
- Y: dependent variable (explained/endogenous/regressand)
- X1: independent variable (explanatory/exogenous/regressors)
o If multiple independent variables (X2 … Xk) = multivariate regression
- ε: error term (disturbance) – captures all other influences on Y (other than the influences of the
independent variables)
o is the error term uncorrelated with the error term – exogenous
o is the error term correlated with the error term - endogenous

Using the regression formulae, we can
- Estimation = using equation for sample using the OLS estimator.
- Inference = use the sample equation to say something about the population equation, by using the
sampling distribution of B̂k


Terminology of the multiple regression model:
Population regression model takes the general form:



Where;
- Yi = dependent variable
- X1, X2, … Xk are independent variables
- E = error term
What is the multiple regression model?
- Regression of Y on X
- Models the effect of the X’s (independent variables) on the Y

, Econometrics
- The regression equation is linear in parameters B0, B1, B2 … Bk
- Subscript i indexes individual population observations (1 through N)




In general form:




Where;
- B0, B1, B2 … Bk are the population parameters (coefficients)
- B0: intercept/constant – expected value of Y when X1 = X2 = … Xk = 0
- B1, B2 … Bk: slope parameters
- B1: expected effect of a one-unit change in X1 on Y; holding X2, X3 … Xk constant
Question: When can B1 be interpreted as a causal effect on X1 on Y, ceteris paribus? Following example
shows this, when the expectation of the value of the error term is equal to zero.




Example model to demonstrate causality in the multiple regression model




This model informs us about how starting wages (W) relate to the gender (G) and age (A) of graduates. We
can then write the expected wage for a female (binary variable where M=0, F=1) graduate aged 25 as:



We can calculate the expectation value:




Expected wage for 25-year old graduate female:



Same goes for a 26-year old graduate female, as below:

, Econometrics
With the difference between the two being the causal impact of being one-year older on wages, ceteris
paribus, on gender – this is given by B2, if and only if E[e|(G,A)] = 0:




In general, causality in the multiple regression model, is a conditional mean assumption. Under this
assumption, we can interpret our estimates as causal.




Bivariate regression analysis
We turn back to:
Population: purely theoretical



Sample: empirical counterpart




In bivariate regression analysis, we analyse two variables to establish the strength of the relationship
between them (X (ind.) and Y(dep.))
Some facts: Looking back in economics, one of the most pressing themes in economic study is inequality.
Since the 1980s, income inequality in advanced countries has seemed to increase. Part of this sharp
increase that has garnered a lot of attention is the rapid rise of incomes at the very top of the distribution.
Some of this can be accounted for by skyrocketing pay for CEOs. We can perform a bivariate regression
analysis on CEO pay:
RQ: Is CEO pay in 1999 linked to 1998 profits?



- Payi : salary + bonuses of the CEO of the ith company
- Profiti : the profit of the ith company




Economic theory to support HA
- Rewards for creating shareholder value
- Performance pay (give CEO incentive to increase company profits)
We use a sample of Fortune500 companies, containing the following information:
- CEO pay in 1999 measured in $thousands
- Profits of 1998 in $millions.
Sample regression model:
$10.28
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ab3800

Conoce al vendedor

Seller avatar
ab3800 Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
1 año
Número de seguidores
0
Documentos
5
Última venta
3 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes