100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Signalen en Systemen 2 samenvatting- Industrieel ingenieur UGent $7.09
Add to cart

Summary

Signalen en Systemen 2 samenvatting- Industrieel ingenieur UGent

4 reviews
 296 views  8 purchases
  • Course
  • Institution
  • Book

Volledige samenvatting van het vak signalen en systemen 2. Bouwt verder op SiSy 1 (die samenvatting verkoop ik ook). Stuur me gerust een berichtje als je vragen hebt. Mogelijks heb ik een iets recentere versie op mijn computer staan, vraag er gerust naar! In deze samenvatting: H1 2 4 6 7 8 Ik behaa...

[Show more]
Last document update: 4 year ago

Preview 3 out of 38  pages

  • Unknown
  • May 17, 2020
  • July 1, 2020
  • 38
  • 2019/2020
  • Summary

4  reviews

review-writer-avatar

By: matteohlvt88 • 2 year ago

Translated by Google

just the ppt's in doc form the old exam questions are handy

reply-writer-avatar

By: indinginf • 2 year ago

Translated by Google

What do you think is a summary, Matteo? You will see a few preview pages with the structure of the summary beforehand. Work is done with structure, images, color,... Moreover, I have been so generous to collect and solve a lot of questions myself. So this document contains much more than just “the ppts in doc form”.

reply-writer-avatar

By: matteohlvt88 • 2 year ago

Translated by Google

If the old exam questions were not included, I would not have bought it.

review-writer-avatar

By: bryan6 • 2 year ago

review-writer-avatar

By: aslankatchikaev • 1 year ago

review-writer-avatar

By: jonasvermeiren • 3 year ago

reply-writer-avatar

By: indinginf • 3 year ago

Translated by Google

Thank you for the positive review and good luck with the exam!

avatar-seller
Signalen en Systemen 2 samenvatting 2de Bach 2de semester


Inhoud
Hfst 1
1. Wat is een signaal ........................................................................................................................... 2
1.1 Definitie ..................................................................................................................................... 2
1.2 Classificatie en eigenschappen.................................................................................................. 2
1.3 Basissignalen ............................................................................................................................ 3
1.4 Bewerkingen op signalen ........................................................................................................... 3
2. Wat is een systeem ......................................................................................................................... 4
2.1 Definitie ..................................................................................................................................... 4
2.2 Classificatie en eigenschappen van systemen ........................................................................... 4
Hfst 2
2.1 Inleiding ......................................................................................................................................... 6
2.2 Impulsantwoord en convolutie ....................................................................................................... 6
2.3 Relatie impulsantwoord en stabiliteit.............................................................................................. 7
2.4 Relatie impulsantwoord en stapantwoord ...................................................................................... 7
Simulatie van dynamische systemen in discrete tijd ............................................................................ 7
Hfst 4
4.1 Inleiding ......................................................................................................................................... 8
4.2 Definities ....................................................................................................................................... 8
4.3 Convergentiegebied ...................................................................................................................... 9
4.4 Voorbeelden en eigenschappen .................................................................................................... 9
4.5 Inverse Z-transformatie ................................................................................................................. 9
4.6 De systeemfunctie ....................................................................................................................... 10
4.7 Relatie tussen de systeemfunctie en de differentievergelijking .................................................... 10
4.8 Relatie tussen z en s ................................................................................................................... 11
4.9 De unilaterale Z-transformatie ..................................................................................................... 11
Hfst 6
6.1 Fourieranalyse van periodieke signalen in discrete tijd (DTFS) ................................................... 12
6.2 Fourieranalyse van niet-periodieke signalen in discrete tijd (DTFT) ............................................. 13
6.3 Fourieranalyse van systemen in discrete tijd (frequentieantwoord) .............................................. 13
Hfst 7
7.1 Inleiding ....................................................................................................................................... 14
7.2 Het concept ‘toestand’ ................................................................................................................. 14
7.3 Schrijfwijze voor discrete LTI-systemen....................................................................................... 14
7.4 Schrijfwijze voor continue LTI-systemen...................................................................................... 15
7.5 Oplossingen van de toestandsvergelijkingen in discrete tijd ........................................................ 16
7.6 Oplossingen van analyse in het toestandsdomein in continue tijd ............................................... 16
7.7 Enkele praktische toepassingsvoorbeelden ................................................................................. 17
Hfst 8
8.1 Inleiding ....................................................................................................................................... 18
8.2 Stochastische processen............................................................................................................. 18
8.3 Statistiek van stochastische processen ....................................................................................... 19
8.4 Tijdsinvariantie van random signalen (stationaire signalen) ......................................................... 20
8.5 Tijdsgemiddelden en ergodiciteit ................................................................................................. 20
Samenvatting termen ........................................................................................................................ 22
Een hele hoop vragen en antwoorden ........................................................................................... 23
Multiple choice ............................................................................................................................... 23
Open vragen .................................................................................................................................. 27
Bissers - 2019 1ste zit .............................................................................................................. 27
Processie van Echternach .......................................................................................................... 28
DFT van éénmalige sequentie zoeken ....................................................................................... 30
Pretparkkaartjes 2014-2015 ..................................................................................................... 31
Verkoop handboek SISY 2011-2012 ........................................................................................ 33
Proefmuizen 2007-2008 .......................................................................................................... 34
X[n] {0 2 0 2 0 2} gegeven 2013-2014 a) x[n] = [(-1)n+1] * u[n] ............................................... 35
Overige open vragen .................................................................................................................. 36
Formularium sisy2 ............................................................................................................................. 38


1

,Signalen en Systemen 2 samenvatting 2de Bach 2de semester



Hoofdstuk 1 (deel discrete signalen):
Definities en Classificaties van Signalen en Systemen
1. Wat is een signaal
1.1 Definitie
Voorbeelden: wisselspanningssignaal, geluidssignaal, hartslag, informatieoverdracht, …
‘Alles in functie van iets’

Een signaal is een functie die het verloop van een verschijnsel (b.v. een fysieke grootheid of een
variabele) voorstelt, gerelateerd aan een (of meerdere) onafhankelijke variabele(n) (b.v. tijd, ruimte,
frequentie, ...). Deze functie bevat informatie over de aard en/of het gedrag van het verschijnsel.
In deze cursus worden alleen 1-dimensionale signalen behandeld: functies met 1 onafhankelijke
variabele.

1.2 Classificatie en eigenschappen
Soorten signalen:
Continu/discreet, analoog/digitaal, reëel/complex, (niet-)periodiek, even/oneven,
deterministisch/random, energiesignaal/vermogenssignaal
Continu signaal: x(t) is continu als de onafhankelijke variabele een continue veranderlijke is.
Discreet signaal: x[n] is discreet als de onafhankelijke variabele een discrete veranderlijke is.
Bv. door sampling (n is een geheel getal, t een reëel getal)

Analoog signaal: de signaalwaarde is een reëel getal binnen een interval [a,b] (a en b kunnen ∞ zijn)
Digitaal signaal: de signaalwaarde is een geheel getal.
Continu-discreet en analoog-digitaal niet verwarren! Continu = horizontale as, analoog = verticale

Reëel signaal: de signaalwaarde is een reëel getal
Complex signaal: de signaalwaarde is een complex getal:
j² = -1

Deterministisch s: waarden zijn volledig gekend voor elke waarde van de onafhankelijke veranderlijke
Random signaal: (=stochastisch) Verloop niet op voorhand gekend: kan alleen statisch beschreven
worden. Bv. ruis.

Even signaal: x(t) = x(-t) spiegelbaar rond verticale as
Oneven signaal: x(t) = - x(-t) spiegelbaar rond de oorsprong



: elk signaal x() kan geschreven worden als som
van een even en een oneven signaal

Periodiek signaal: x(t) = x(t+T), ∀t
Niet-periodiek s: Geen periode te vinden, bv. door de som van sommige(!) 2 periodieke signalen.
Opdat de som van 2 periodieke signalen ook periodiek is moet T1/T2 rationaal zijn. Periode is KGV.
Merk op: som van 2 discrete periodieke functies zal altijd periodiek zijn (verhouding altijd rationaal).

en  enkel dan periodiek

2

, Signalen en Systemen 2 samenvatting 2de Bach 2de semester


Energie en vermogen in discrete tijd:




De energie = opp onder grafiek Vermogen = gemiddelde van gekwadrateerd signaal

Energiesignaal: het signaal heeft een eindige energie: (0<E<+∞)
Vermogenssignaal: het signaal heeft een eindig vermogen: (0<P<+∞)

Het vermogen van een energiesignaal bedraagt 0. De energie van een vermogenssignaal is +∞.
Periodieke signalen worden vermogenssignalen genoemd als de energie per periode eindig is
(vermogen berekend per periode.)
Een signaal kan ook noch energiesignaal, noch vermogenssignaal zijn.

1.3 Basissignalen
Eenheidsstapfunctie/Heaviside-functie
In discrete tijd is u[0] gedefinieerd, in continue tijd is u(0) niet gedefinieerd!




Eenheidsimpulsfunctie/Diracfunctie/Dirac-impuls/deltafunctie




! dus niet oneindig op n=0, zoals in continue tijd bij t=0 wel is

Voorbeelden van andere signalen in discrete tijd
Complex exponentieel: x[n] = 𝑒 = cos Ω0n + j sin Ω0n (periodiek als Ω0/2π = rationaal)
Sinusoïdaal: x[n]= A cos(Ω0n + ϴ)


1.4 Bewerkingen op signalen
Bewerkingen op signalen (op de afhankelijke veranderlijke)
 Amplitudeschaling y[n] = c x[n]
 Sommeren
 Vermenigvuldigen
 Afleiden
 Integreren

Bewerkingen op de onafhankelijke veranderlijke (n of t)
 Tijdsschaling: y[n] = x[a*n] (a<1: horizontale uitrekking, a>1: inkrimping, compressie)
 Reflectie: y[n]= x[-n] (spiegelen om verticale as)
 Tijdverschuiving: y[n] = x[n-n0] (n0>0: naar rechts)
Voorbeeld: x(2-t) = x(-(t-2)): Eerst spiegelen, dan verschuiven naar rechts!




3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller indinginf. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.09. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

48298 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.09  8x  sold
  • (4)
Add to cart
Added