100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Functies - Calculus H1, H6 & Appendix A

Rating
4.0
(1)
Sold
7
Pages
45
Uploaded on
15-06-2020
Written in
2019/2020

Dit document is een samenvatting voor het vak Functies. De samenvatting bevat alle aantekeningen uit alle colleges. Het is gebaseerd op het boek Calculus van Stewart: Hoofdstuk 1, Hoofdstuk 6 (gedeeltelijk) en Appendix A. Zelf heb ik een 8,8 gehaald voor dit tentamen.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
H1, h6, appendix a
Uploaded on
June 15, 2020
Number of pages
45
Written in
2019/2020
Type
Summary

Subjects

Content preview

FUNCTIES CALCULUS




Hoofdstuk 1
Appendix A
§6.1, §6.2, §6.3, §6.6

, INHOUDSOPGAVE

Hoofdstuk 1 – Functies en limieten.............................................................................................................. 4
§1.1 – Vier manieren om een functie uit te drukken ..................................................................................... 4

Functies en domeinen........................................................................................................................................... 4
Stuksgewijs gedefinieerde functies ...................................................................................................................... 5
Even en oneven functies ....................................................................................................................................... 6


Appendix A - ongelijkheden en absolute waarden........................................................................................ 7

Intervallen............................................................................................................................................................. 7
Ongelijkheden....................................................................................................................................................... 7
Kwadratische ongelijkheden ................................................................................................................................ 8
Gebroken lineaire ongelijkheid............................................................................................................................. 9
Absolute waarde ................................................................................................................................................ 10


§1.2 – Wiskundige modellen ..................................................................................................................... 15

Lineaire functies ................................................................................................................................................. 15
Polynomen .......................................................................................................................................................... 15
Machtsfuncties ................................................................................................................................................... 15
Rationale functies ............................................................................................................................................... 16
Goniometrische functies ..................................................................................................................................... 17
Exponentiële functies ......................................................................................................................................... 17
Logaritmen ......................................................................................................................................................... 18


§1.3 – Nieuwe functies uit oude functies ................................................................................................... 19

Verschuivingen van de grafiek: .......................................................................................................................... 19
Oprekken en indrukken van de grafiek: ............................................................................................................. 19
Samenstellen van functies .................................................................................................................................. 20


§1.4 – De raaklijn ...................................................................................................................................... 21
§1.5 De limiet van een functie ................................................................................................................... 22

Linker- en rechterlimiet ...................................................................................................................................... 23
Oneindige limieten ............................................................................................................................................. 24


§1.6 – Limieten berekenen met de limietwetten ........................................................................................ 25

Limieten uitrekenen ............................................................................................................................................ 25
De insluitstelling ................................................................................................................................................. 27

,§1.8 – Continuïteit .................................................................................................................................... 28

Tussenwaardestelling ......................................................................................................................................... 31


Hoofdstuk 6 – Inverse functies .................................................................................................................. 33
§6.1 – Inverse functies .............................................................................................................................. 33
§6.2 – Exponentiële functies ..................................................................................................................... 35

Exponentiële functies ......................................................................................................................................... 35


§6.3 – Logaritmische functies .................................................................................................................... 37

Logaritmen ......................................................................................................................................................... 37


§6.6 – Inverse van goniometrische functies ............................................................................................... 40

Sinus ................................................................................................................................................................... 40
Cosinus................................................................................................................................................................ 42
Tangens .............................................................................................................................................................. 43
Rekenen met de arcsin, arccos en arctan ........................................................................................................... 44

, HOOFDSTUK 1 – FUNCTIES EN LIMIETEN
§1.1 – VIER MANIEREN OM EEN FUNCTIE UIT TE DRUKKEN

Bij een functie denken we aan iets als 𝑓(𝑥) = 𝑥 2 + 2. We stoppen hierbij altijd een x erin en dan komt
de y er altijd uit. Je kunt het zien als een kleine machine.
Hierin is x de onafhankelijke variabele en y is de
afhankelijke variabele.




FUNCTIES EN DOMEINEN

Definitie:
Een functie van A naar B is een voorschrift dat aan ieder element x ∈ A precies één element y ∈ B
toevoegt. Notatie: y = f(x).
Hoofdletter A en B zijn
verzamelingen
- A heet hier het domein;
- B heet hier het co-domein;
- Het bereik zijn alle mogelijke uitkomsten.


Er zijn meerdere manieren om een functie te visualiseren:

- Een grafiek van f: { (x, y) | y = f(x), x ∈ A}
- Pijlendiagram




Daarnaast kun je het interval van zo’n functie beperken,
waardoor de grafiek ook beperkt wordt. Daarbij zijn twee symbolen belangrijk:

• hoort wel nog bij de grafiek, gesloten interval [ ]
o hoort niet meer bij de grafiek, open interval < >


We kunnen ons x2 voorstellen op het interval [-1, 2>. Hierin is het domein = [-1, 2>, het co-domein is ℝ
en het bereik is [-1, 3>.

Reviews from verified buyers

Showing all reviews
5 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
cdenhollander Hogeschool Windesheim
Follow You need to be logged in order to follow users or courses
Sold
597
Member since
8 year
Number of followers
526
Documents
32
Last sold
2 hours ago

Hoi, ik ben Chantal en ik zit nu in het eerste jaar van de studie tweedegraads Lerarenopleiding wiskunde op Windesheim, te Zwolle. Hiervoor heb ik bijna anderhalf jaar Bedrijfskunde gestudeerd aan de HU. Hiervoor heb ik bijna elk vak samengevat en er komen mogelijk nog meer samenvattingen aan.

3.9

153 reviews

5
35
4
82
3
27
2
3
1
6

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions