100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Theorie wiskunde ingangsexamen (tand)arts $10.61
Add to cart

Summary

Samenvatting Theorie wiskunde ingangsexamen (tand)arts

1 review
 302 views  19 purchases
  • Course
  • Institution

Dit document bevat alle THEORIE voor het ingangsexamen (tand)arts in België, voor wiskunde. Ik heb deze zelf gemaakt en zelf gebruikt om te slagen op het ingangsexamen. Op 19 pagina's heb ik alle details die je moet kennen zeer compact (maar volledig) samengeplaatst. Zeer gestructureerd per hoofds...

[Show more]

Preview 3 out of 9  pages

  • October 24, 2020
  • 9
  • 2020/2021
  • Summary

1  review

review-writer-avatar

By: KULthk • 4 year ago

avatar-seller
Wiskunde
1 ALGEBRA
1.1 Getallen en rekenregels
1.1.1 Getallen
natuurlijk ℕ 0,1,2,3 rationale ℚ -0,5, -1, 0, 0,333… kommagetal verkregen door breuk (eindig
aantal decimalen of (uiteindelijk)
repeterende decimale)
geheel ℤ -1,0,1,2 reëel ℝ 𝜋, √2 (√2 = irrationeel = oneindig niet-repeterende
decimalen)
ℕ⊂ℤ⊂ℚ⊂ℝ

1.1.2 Bewerkingen
Een priemgetal is een geheel getal groter dan 1 en enkel deelbaar door 1 en zichzelf
® ieder getal kan op unieke wijze geschreven worden als product van priemgetallen (beginnen met delen door
kleinste priemgetal …)

GGD grootste gemene deler
1 beide getallen ontbinden in priemfactoren
2 de gemeenschappelijke factoren vermenigvuldigen (bevatten allebei 2∙ 7 → 14 GGD)

KGV kleinste gemene veelvoud = kleinste getal dat deelbaar is door deze 2
!∙#
® 𝑘𝑔𝑣 (𝑎, 𝑏) =
$$% (!,#)

! *
"
machten: 𝑥 " = √𝑥 * = ; "√𝑥<
ax+y = ay • ax
(ax)y = axy
(ab)x = axbx

11 12 13 14 15 16 17 18 19
121 144 169 196 225 256 289 324 361

merkwaardige producten
× 𝑎+ − 𝑏+ = (𝑎 + 𝑏)(𝑎 − 𝑏)
× (𝑎 ± 𝑏)+ = 𝑎+ ± 2𝑎𝑏 + 𝑏+
× (𝑎 ± 𝑏), = 𝑎, ± 3𝑎+ 𝑏 + 3𝑎𝑏+ ± 𝑏,

deelbaarheid
5 Het laatste cijfer van het getal is deelbaar door 5.
4 De laatste 2 cijfers zijn deelbaar door 4.
25 De laatste 2 cijfers zijn deelbaar door 25.
8 De laatste 3 cijfers zijn deelbaar door 8.
3 De som van de cijfers v/h getal is deelbaar door 3.
9 De som van de cijfers v/h getal is deelbaar door 9.

1.2 Evenredigheid
-
recht evenredig y is RE met x als = constant 𝑦 =𝑐∙𝑥 rechte lijn door (0,0)
.
omgekeerd evenredig y is OE met x als 𝑥 ∙ 𝑦 = constant 𝑐 hyperbool met x- en y-as als
𝑦=
𝑥 asymptoten

1.3 Veeltermen
graad = coëfficiënt van hoogst voorkomende macht
veeltermen delen -> deelbaarheid als R(X) = 0 dan f(a) = 0 dan (a, f(a)) is nulpunt van f(x)
• Euclidische deling (-)
F(X) D(X) 𝐹(𝑥) = 𝐷(𝑥) ∙ 𝑄(𝑥) + 𝑅(𝑥)
Q(X) En niets anders

R(X)




1

, • Horner (+) d(x) = (x-a) -> f(x) = (x-a)(nieuwe functie) + r
• Reststelling d(x) = (x-a) -> rest van f(x)/(x-a) = f(a)

veelterm ontbinden: 𝑓(𝑥) = 𝑎(𝑥 − 𝑥/ )(𝑥 − 𝑥+ ) … 𝑥0 = nulpunten van 𝑓(𝑥)

veeltermen oplossen:
× ontbinden OF • Som nulpunten = -b/a
× afzonderen • Product nulpunten = c/a
2𝒃±√𝑫
× 𝑫 = 𝒃𝟐 − 𝟒𝒂𝒄 → 𝒙 =
𝟐𝒂


VERGEET NIET
× 𝑥 0#$#" = 𝑎 → 𝑥 = ± "√𝑎

1.4 Logaritmen
log ! 𝑥 = 𝑦 ⇔ 𝑎 - = 𝑥 𝑎 ∈ ℝ9 8 ∖ {1} (grondtal) 𝑥 ∈ ℝ9
8 (argument)
log ! 1 = 0 log ! 𝑎 . = 𝑥 𝑎:;<% . =𝑥
Briggse logaritme: log/8 𝑥 = 𝑦 → log 𝑥 = 𝑦
natuurlijke logaritme: ln 𝑎 = 𝑥 → 𝑒 . = 𝑎

1.4.1 rekenregels
.
log ! (𝑥 ∙ 𝑦) = log ! (𝑥) + log ! (𝑦) en log ! Z [ = log ! (𝑥) − log ! (𝑦)
-


log ! (𝑥 0 ) = 𝑛 ∙ log ! (𝑥)

:;<& . /
log ! 𝑥 = en log ! 𝑥 =
:;<& ! :;<' !


1.5 Stelsels oplossen
• Substitutie: uit 1 vergelijking 1 variabele uithalen en invullen in een andere vergelijking (blijven herhalen tot 1
onbekende en 1 vergelijking overblijft)
• Eliminatie: “lineaire combinaties” = veelvouden van 2 vergelijkingen optellen of aftrekken

Ø Bij 3 onbekenden en 3 stelsels:
- Regel 2 keer x en y, en 1 keer x of y en z
- Regel x = … en vul in bij Y (of omgekeerd)
- Indien 1 gevonden kan de rest worden gevonden

1.6 Moduletekens oplossen
|f(x)| < a -a < f(x) < a
|f(x)| > a f(x) > a of f(x) < -a
Ø Klinkt logisch maar is met getallen eigenlijk niet direct logisch

Als f(x) negatief is dan is |f(x)| = - x

2 MEETKUNDE
2.1 Vlakke figuren
2.1.1 Driehoek
× som van de hoeken van een driehoek is 180°
× langste zijde ligt tegenover grootste hoek, kortste zijde tegenover kleinste hoek

gelijkzijdige driehoek: 3 x zelfde lengte + 3 x 60°
gelijkbenige driehoek: 2 x zelfde lengte + basishoeken even groot
rechthoekige driehoek: 1 x 90° + 𝑎+ = 𝑏+ + 𝑐 + b en c = rechthoekszijden, a = schuine zijde

Stelling Thales: gelijkvormigheid
AB/ AC = A’B’/A’C’ = BB’/CC’
K




2.1.2 Koorde (cirkel)
Lengte koorde = k = 2r . sin (ß/2) ß is de hoek (aan het middelpunt) die tegenover de koorde ligt als men het als een
driehoek beschouwt met zijden; r, r, k



2

, 2.1.3 Vierhoeken
• Trapezium • Ruit
– 1 paar evenwijdige = basiszijden ×alle zijde hebben dezelfde lengte
– 1 paar niet-evenwijdige zijden = benen ×de diagonalen staan loodrecht op elkaar
en snijden in het midden
gelijkbenig trapezium: • Rechthoek
× diagonalen zijn even lang × diagonalen zijn even lang en snijden
× hoeken aan zelfde basis zijn even groot elkaar in het midden

• Parallellogram • Vierkant
× tegenoverstaande zijden zijn even lang
× tegenoverstaande hoeken even groot
× diagonalen snijden elkaar in het midden da

2.1.4 oppervlakte en omtrekken
omtrek oppervlakte
driehoek som van de zijden 𝑏∙ℎ
2
trapezium som van de zijden (𝑏 + 𝐵) ∙ ℎ
2
parallellogram 2(𝑏 + 𝑠) 𝑏∙ℎ
ruit 4𝑧 𝐷∙𝑑
2
rechthoek 2(𝑏 + ℎ) 𝑙∙𝑏
vierkant 4𝑧 𝑧+
cirkel 2∙𝜋∙𝑟 𝜋 ∙ 𝑟+

2.1.5 Volumes
=
Bol 𝜋 𝑟,
,
Piramide en kegel Agrondvlak . H / 3

2.2 Analytische meetkunde
kwadranten
II I
III IV

afstand tussen 2 punten: d(𝑥+ − 𝑥/ )+ + (𝑦+ − 𝑦/ )+

2.2.1 Rechte
𝑦 − 𝑦/ = 𝑚 (𝑥 − 𝑥/ ) 𝑦+ − 𝑦/
𝑚=
𝑥+ − 𝑥/
cartesiaanse 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 −𝑎 −𝑐
𝑚= 𝑞=
𝑦 = 𝑚𝑥 + 𝑞 𝑏 𝑏
q = snijpunt y-as m = rico (= tan𝛼)

2.2.2 Parabool
𝑓(𝑥) = 𝑎𝑥 + + 𝑏𝑥 + 𝑐
𝑓(𝑥) = 𝑎(𝑥 − 𝛼)+ + 𝛽
× a > 0 dalparabool
a < 0 bergparabool
× |𝑎| wordt groter → opening smaller
× |𝑎| wordt kleiner → opening breder
2# 2>
× TOP Z +! , =! [ of TOP (𝛼, 𝛽)
2#
× symmetrieas: 𝑥 = of 𝑥 = 𝛼
+!


2.2.3 Cirkel
(𝑥 − 𝑥* )+ + (𝑦 − 𝑦* )+ = 𝑟 +
𝑎𝑥 + + 𝑎𝑦 + + 𝑏𝑥 + 𝑐𝑦 + 𝑑 = 0
× goniometrische cirkel 𝑥 + + 𝑦 + = 1




3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller mdmd12. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $10.61. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

47561 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$10.61  19x  sold
  • (1)
Add to cart
Added