100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Discrete Wiskunde UGent industrieel (E761029) $5.41   Add to cart

Summary

Samenvatting Discrete Wiskunde UGent industrieel (E761029)

2 reviews
 477 views  13 purchases
  • Course
  • Institution

Discrete wiskunde, gegeven aan industrieel ingenieur informatica en elektronica-ICT. Nieuwe inhoud van het vak sinds . Dit document bevat 1) een samenvatting van alle concepten die aan bod kwamen in dit vak (7blz), 2) Enkele tips & tricks. Stuur gerust een berichtje indien je vragen hebt. ...

[Show more]
Last document update: 3 year ago

Preview 2 out of 10  pages

  • December 29, 2020
  • June 29, 2021
  • 10
  • 2020/2021
  • Summary

2  reviews

review-writer-avatar

By: edouardverstraete • 10 months ago

review-writer-avatar

By: gentstudent342 • 3 year ago

reply-writer-avatar

By: indinginf • 3 year ago

Translated by Google

Bye Tim, Could you give me some feedback on the summary? What didn't meet your expectations? Good luck with the exam!

reply-writer-avatar

By: gentstudent342 • 3 year ago

Translated by Google

I submitted my review a little too volatile. Now adjusted the rating to the score I originally intended. Good luck to you with your exam!

avatar-seller
DISCRETE WISKUNDE
INHOUD
Hoofdstuk 1: basisbegrippen ...................................................................................................................................... 1
Hoofdstuk 2: Verzamelingen, relaties en functies ....................................................................................................... 1
Hoofdstuk 3: modulorekenen ..................................................................................................................................... 2
Rekenen in ℤn.................................................................................................................................................................. 2
Elementaire vergelijkingen bij modulorekenen .............................................................................................................. 3
Lineaire Diofantische vergelijkingen ............................................................................................................................... 3
Chinese reststelling ......................................................................................................................................................... 3
Residugetalsysteem (grote getallen) .............................................................................................................................. 4
Hoofdstuk 4: eindige velden ....................................................................................................................................... 5
Toepassingen in cryptografie .......................................................................................................................................... 5
Hoofdstuk 5: logica ..................................................................................................................................................... 6
Propositionele logica ...................................................................................................................................................... 6
Predikatenlogica ............................................................................................................................................................. 6
Bewijsstrategieën ........................................................................................................................................................... 7
Rechtstreeks bewijs .................................................................................................................................................... 7
Bewijs door gevallenonderzoek .................................................................................................................................. 7
Bewijs door contrapositie ........................................................................................................................................... 7
Bewijs uit het ongerijmde ........................................................................................................................................... 7
Bewijs door wiskundige inductie ................................................................................................................................ 7
Handige dingen/bevindingen uit werkcollege ............................................................................................................ 8
Theorie uit oefeningen ............................................................................................................................................... 9

, DiWi 2020-2021

DISCRETE WISKUNDE
HOOFDSTUK 1: BASISBEGRIPPEN
Groep, ring & veld. Verzameling G met binaire operator ◊. Verzameling R met 2 binaire operatoren ◊ en ●.
Groep: gesloten onder ◊, ◊ is associatief, ∃ eenheidselement voor ◊,elk element heeft invers voor ◊
Commutatieve (= abelse) groep: groep waarvoor ook geldt dat ◊ commutatief is.
Ring: zoals abelse groep + minstens 2 elementen, gesloten onder ●, ● associa ef en ● distribu ef t.o.v. ◊.
Commutatieve ring: ring waarvoor geldt: ● is commutatief
Ring met eenheidselement: ring waarvoor geldt: ∃ uniek eenheidselement voor ●
Veld: commutatieve ring met eenheidselement + elk element (≠ 0) heeft een invers voor ●
Galoisveld GF(q): veld van orde q met q priemmacht (q=priemn) bv. GF(5)={0,1,2,3,4} (= een eindig veld)
Eindige groep/ring/veld: waarbij G of R eindig is. Grootte = orde = |G| = #G
Bv. ℤ is een ring en geen veld: er bestaat maar 1 operator waarvoor a ◊ b = 1 = b ◊ a
ℕ={0,1,2,3,…} Natuurlijke getallen gesloten + *, natuurlijke ordening
ℤ={…,-2,-1,0,1,2,…} Gehele getallen gesloten + * - , ring
ℚ={a/b | a ∈ ℤ, b ∈ ℤ, b ≠ 0} Rationale getallen gesloten + * - / , veld, geen discrete ordening
ℂ={a+bi | a,b ∈ ℝ, i² = -1} Complexe getallen gesloten + * - / , veld, voorstellen in vlak
ℤn = {0,1,2,…,n-1}, n ∈ ℕ, n ≥ 2

HOOFDSTUK 2: VERZAMELINGEN, RELATIES EN FUNCTIES
Verzameling is bepaald door zijn (unieke) elementen. Ongeordend. A=B indien zelfde elementen. Cardinaliteit = #A.

Onechte deelverzameling: lege verzameling deelverzameling van A en A deelverzameling van zichzelf.
Echte deelverzameling: alle andere verzamelingen. ⊆ is zowel echt als onecht, ⊂ is echt.

Machtsverzameling = delenverzameling = power set P(A) = {X: X ⊂ A }. Er geldt dat #P(A) = 2#A

Partitie: strikte opsplitsing van A in verschillende verzamelingen
Bv. A = {1,2,3,4,5,6}  een mogelijke P = {{2},{1,5},{3,4,6}}
Doorsnede ∩, unie ∪, verschil \ , complement Ac = Ā  Wetten van De Morgan van toepassing bij ∩ & ∪
Cartesisch product: A x B = {(a,b) | a ∈ A ∧ b ∈ B} ( koppels van 2), A x B x C x… kan ook
Koppel heeft wel volgorde: (a,b) != (b,a). A x B x C leidt tot triples, met 4 = quadruples, …
Relatie R tussen A en B: R ⊂ A x B aka R: A  B.
Domein van R = verzameling van alle punten waaruit pijl vertrekt.
Bereik/codomein van R = verzameling van alle punten waarin een pijl toekomt.




Verzamelingen A en B bevatten evenveel elementen ⇔ er bestaat een bijectie van A naar B of omgekeerd.

Eindig aftelbare verzameling: iedere eindige verzameling is aftelbaar
Oneindig aftelbare verzameling: er bestaat een bijectie met ℕ. <-> overaftelbare verzameling: geen bijectie met ℕ.
R is een partiële orderelatie in V ⇔




R is een totale orderelatie in V als ook voldaan is aan ∀x,y ∈ V: (x,y) ∈ R of (y,x) ∈ R
Als V geordend wordt m.b.v. een totale orderelatie: lineair geordende relatie of ketting.
Strikte orderelatie bekomt men door reflexieve pijlen te verwijderen (-> antireflexief). Bv. > is strikt, ≥ niet
1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller indinginf. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.41. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

77858 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.41  13x  sold
  • (2)
  Add to cart