100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Lecture notes Year 1 MBChB $9.98
In winkelwagen

College aantekeningen

Lecture notes Year 1 MBChB

 1 keer verkocht
  • Vak
  • Instelling
  • Boek

Concise lecture notes from the nucleic acids strand of the IMS module taught in the first year of the MBChB course at the University of Leeds!

Voorbeeld 2 van de 8  pagina's

  • 2 januari 2021
  • 8
  • 2017/2018
  • College aantekeningen
  • Year 1 mbchb: introduction to medical science
  • Alle colleges
avatar-seller
NUCLEIC ACIDS

DNA STRUCTURE AND REPLICATION


Evidence for DNA’s biological role
Frederick Griffith
 Streptococcus pneumoniae- cause of fatal pneumonia in humans
 Two strains- one grew as ‘rough’ colonies & non virulent, the other
as ‘smooth’ colonies and was virulent

Oswald Avery Live smooth + rough
 From purified DNA, RNA, protein, lipid and carbohydrate only DNA strains isolated
from heat killed virulent strain could induce virulence in the non- from dead mouse

virulent strain

Hershey and Chase
 The protein and DNA components of bacteriophage were labelled
with different radioactive molecules

Erwin Chargaff – studied base composition of DNA in different species and the proportion of bases

DNA structure
 Sugar phosphate backbone, adjacent deoxyribose sugars linked by phosphodiester bonds
 5’ and 3’ gives DNA strand directionality, A=T C≡G
 5’  3’ (coding strand in protein synthesis) and 3’  5’ (template strand in protein synthesis)
 DNA + histone protein = chromatin
 DNA is tightly coiled with help of proteins to fit its considerable length into the nucleus
 Active genes more loosely coiled then silent ones

Cell cycle
 Interphase (90% of the time) – chromatin is disordered and uncondensed, it condenses in the cell cycle

Evidence for semi-conservative replication
 Meselson and Stahl grew E.coli for 14 generations in a medium containing 15N (heavy). After 14 generations, most of
the DNA in the bacteria would be heavy due to 15N
 They then transferred these bacteria into a medium containing 14N, and left them to replicate once
 After 1st division: hybrid DNA, so it doesn’t replicate conservatively
 After 2nd division: after being centrifuged, two bands of DNA were produced, one hybrid and one light, showing
replication is semi-conservative
 Light DNA increases and heavy DNA decreased after subsequent divisions

DNA replication
 DNA synthesis occurs at the origin of replication and uses a replication fork
o At the fork:
o Helicases breaks H bonds and unwind double stranded DNA
o Single strand binding protein stabilise denatured DNA, they ensure chains stay
separated
o RNA primase makes short RNA primers to let replication happen
o The RNA primer allows DNA polymerase to start the replication as the primer
provides an OH group on carbon 3 to allow phosphodiester bonds to form with
free nucleotides – forms sugar phosphate backbone
o DNA polymerase III brings in dNTPs which bind together, the third phosphate
group breaks off which releases energy for the phosphodiester bond to form
o DNA polymerase carries out the elongation of the new strand of DNA, which
forms by complementary base pairing to the template strand
 Okazaki fragments - relatively short fragment of DNA synthesized on the lagging strand during DNA replication
 DNA polymerase III carries out DNA replication in prokaryotes
DNA synthesis

,  Occurs in 5’ to 3’
 DNA polymerase catalyses the formation of a new phosphodiester bonds

Leading and lagging strands
 DNA made in short strands on the lagging strand, each one primed with a new DNA primer
 DNA polymerase I replaces the RNA primers with DNA and DNA ligase seals the gaps between fragments
 DNA polymerase can only function in 5’ to 3’ direction, with nucleotides being added from the 3’ (on the original
strand)
 DNA polymerase travels along the leading strand in the 3’ to 5’ direction, adding new nucleotides to the 3’ end of the
new strand

Mutations
 DNA polymerase has a 3’ to 5’ editing function, to remove incorrectly inserted bases, reduces error to 1 in 10 7
 Enzymes present to also check for mismatches, reduces error to 1 in 10 9
 Occurs due to errors in replication, induced by DNA damage, radiation, mutagens (such as carcinogens)
 Base substitution, deletions, insertions, rearrangements – can be silent mutations
 Deletions and insertions causes frameshift
o Consequences:
 Germ cells – can be inherited, could result in new genetic disease
 Somatic cells – not inherited but can lead to cancer
Mutagens
 Example is ethyl methane sulphonate (EMS) which alkylates DNA to form the O6-ethylguanine adduct
 This adduct mis-pairs with thymine during replication producing GC ® AT mutation
 EMS, N-Ethylnitrosourea (ENU) and other alkylating agents used to generate mutations in organisms
 This can help to find novel genes involved in disease processes

DNA repair 1
 Endogenous and exogenous chemicals damage the DNA
 DNA repair proteins remove the damage before replication occurs
 Base excision repair proteins cut out damaged bases- they are specific to specific types of damage
 Nucleotide excision repair proteins are less specific and cut out sections of the damaged DNA strand

DNA repair 2
 DNA polymerase I replaces the DNA by copying the intact strand, and DNA ligase seals the gap
 Goes wrong or too much to repair - mutations may occur, increasing the chance of cancer

Cytosine deamination
 Occurs slowly in aqueous solution and changes the sequence of the DNA strand

Uracil N glycosylase
 Recognises uracil in DNA and cuts it out - base excision repair enzyme
 specific for its substrate

THE HUMAN GENOME


The human genome consists of about 3 x 109 nucleotides distributed between 22 autosomes, 2 sex chromosomes (X and
Y) and a small amount of DNA that is present in mitochondria
RBC’s lose their nucleus to squeeze through capillaries but other cells (e.g. hepatocytes and megakaryocytes) copy their
DNA several times without dividing and become 4n, 8n, 16n etc.

Women have one inactive copy of their X chromosome in each cell of their body and push it to the edge of the nucleus
(Barr body)

Synteny - where long DNA sequences (e.g. genes) are present in the same order across species

Translocation
 Chromosome breakage and reforming, can cause disease in patients
 Translocations can cause cancer and cause developmental abnormalities and can be inherited
Transcription of genes

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper azreenafzal. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $9.98. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65040 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
$9.98  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd