Motion Graphs
● In a position graph, velocity is the slope
● In a velocity graph, acceleration is the slope & the area under is displacement
● In an acceleration graph, the area under the line is velocity
Projectile Motion
The basics:
● Horizontal motion: velocity, displacement,
time
● Vertical motion: initial velocity, final
velocity, displacement, time, acceleration
● Horizontal time=vertical time
● Apply kinematic equations to fill in vertical
quantities and then use those to find
horizonal quantities
● At the highest point, t=-Voy/-g
Involving an angle:
● Break it down by horizontal and vertical components
● Use kinematics
● Apply the average velocity equation to find missing horizontal quantities (v=d/t)
, ● If up to the right, sine is for vertical and cosine for horizontal
● Horizontal range: Voy^2xsin2(-)/g where (-) is theta
Forces
Newton’s Laws
1. If a center of mass is at rest, it’ll remain at rest unless acted upon by a net force (a
moving center of mass will maintain a constant velocity unless acted upon by a net force)
2. The acceleration of an object/system is equal to the net force acting upon it divided by its
mass (a=fnet/m)
3. Every action has an equal and opposite reaction (action-reaction requires 2 forces from 2
objects acting on each other)
Equilibrium
● Static Equilibrium: occurs when the net force on a MOTIONLESS object/system is 0
● Dynamic Equilibrium: occurs when the net force on a MOVING object/system is 0 (no
acceleration though, must have a constant velocity)
● If it’s not moving or at a constant rate, all forces are balanced
Normal Force & Friction
● Normal force acts perpendicular to the surface applying it (Fg=mg)
● Friction force acts parallel to the surface applying it (s stops it from moving, k slows it)
o Static friction (Fs): acts on motionless object; magnitude/direction will
always be whatever keeps the object from moving (Fs<Ms x Fn); static
friction will oppose the applied force until it reaches the max (then kin)
o Kinetic friction (Fk): acts on moving objects once the static friction
threshold has been passed; direction is always opposite the direction the
object is moving (Fk=Mk x Fn) where M is the coefficient of friction
o Sine makes it slide, cosine keeps it close (cos into the ramp, sine down it)
, Atwood Machines
● Two masses hanging from a massless string with a massless/frictionless pulley
● Tension is consistent in the string and accelerations are always equal
● Considered a system (python method!), gravity is all that will accelerate it
● Fnet=ma=Tg-T=ma-T which means T=mg-ma
● If m1+m2m the system is in equilibrium (d or s) but if not, it accelerates
● Newton’s third law: a=Fnet/m
● The downwards force of one block minus the net force would give you the force of
tension
*if an object is sliding or traveled a distance down (like on a ramp), the velocity at the bottom
can be found with v=root of 2gh
*if going down a frictionless ramp, Mk=h/x
Mechanical Energy
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller jiayuli. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $10.49. You're not tied to anything after your purchase.