100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Aantekeningen Dataverzameling en Analyse Master Communicatie & Beïnvloeding $3.21   Add to cart

Class notes

Aantekeningen Dataverzameling en Analyse Master Communicatie & Beïnvloeding

 38 views  1 purchase
  • Course
  • Institution

Aantekeningen van de kennisclips van Dataverzameling en analyse (LET-CIWM410). Voorbeelden, tabellen en afbeeldingen toegevoegd om de stof begrijpelijker te maken. Geschikt voor masterstudenten Communicatie en Beïnvloeding aan Radboud University/Radboud Universiteit.

Preview 5 out of 49  pages

  • January 11, 2021
  • 49
  • 2020/2021
  • Class notes
  • Unknown
  • All classes
avatar-seller
Week 2
Kennisclip 3 | Tussenproefpersoon design | ANOVA de basis 2
Kennisclip 4 | Tussenproefpersoon design | ANOVA factoriele ontwerpen 5
Week 3
Kennisclip 5 | Tussenproefpersoon design | ANOVA de basis 11
Kennisclip 6 | Binnenproefpersoon variantieanalyse | ANOVA output 13
Week 4
Kennisclip 7 | Regressie de basis 23
Kennisclip 8 | Regressie: modeltoetsing 28
Kennisclip 9 | Regressie: uitbreidingen 33
Week 5
Kennisclip 10 | Factoranalyse: de basis 39
Kennisclip 11 | Factoranalyse: roteren & rapporteren 42

,Week 2
Kennisclip 3 | Tussenproefpersoon design | ANOVA: de basis
Deze toets bij: één onafhankelijke variabelen & twee gemiddelden of meer.
- Experiment à hiermee vergelijk je groepen met elkaar à ANOVA à een factor
(onafhankelijke variabele) heeft twee of meer niveaus, denk aan geslacht,
opleidingsniveau, wel of geen metafoor.
Je onderzoekt of het niveau van de onafhankelijke variabele invloed heeft op de afhankelijke
variabele. Dus of de response (onafhankelijke variabele) veranderd, afhankelijk van het
niveau van de afhankelijke variabele. Als je de onafhankelijke variabele verandert in niveau,
wat gebeurt er dan met de afhankelijke variabele?
- Onafhankelijke variabele: man/vrouw, land (waar respondenten vandaag komen,
bijv. NL en DE)
- Afhankelijke variabele: tevredenheid, aantal negatieve tweets.

One-way ANOVA f-test
- Toetst of minstens één populatiegemiddelde verschilt van de andere
populatiegemiddelden. Populatie, niet van de steekproef, dus niet het toetsen van
het gemiddelde van de drie onderzochte groepen.
One-way ANOVA gebruik je bij:
- Een nominale onafhankelijke variabele (met twee of meer niveaus)
- Een afhankelijke variabele van interval of ratio niveau
One-way ANOVA of univariate eenweg variantie-analyse
- Univariaat: één afhankelijke variabele
- Eenweg ANOVA: één factor
- ANOVA is de meest eenvoudige f-toets.

Populatie – steekproef
Op basis van het gemiddelde (M) en de standaardafwijking (SD) schatten we de M en SD in
de populatie, door middel van de steekproefverdeling.
- M zegt iets over de spreiding tussen de groepen: hoe verder uit elkaar, hoe groter de
spreiding. Dan zouden het wel eens twee verschillende groepen/populaties kunnen
zijn;
- SD zegt iets over de spreiding binnen de groepen: hoe dicht liggen de scoren rond het
gemiddelde binnen elke groep. Hoe kleiner, hoe dichter bij het gemiddelde. Hoe
kleiner, hoe beter het gemiddelde recht doet aan de data en aangeeft hoe iedereen
scoort.
Om verschillen te kunnen vinden tussen populaties hebben we een grote M en kleine SD
nodig. Zie onderstaande afbeelding.




2

,One-way ANOVA verdeelt de totale variatie




Between groeps variation (het liefst groot) Within groups variation (liefst klein)

One-way ANOVA vergelijkt twee typen van variatie (zie afbeelding hierboven) om gelijkheid
van gemiddelden te toetsen
- Variatie/spreiding tussen de groepen (denk aan de M)
- Variatie/spreiding binnen de groepen (denk aan SD)
- Vergelijking op basis van ratio van variaties
Als treatment-variatie (tussen de groepen) significant groter is dan de random variatie
(binnen de groepen) dan zijn de gemiddelden niet gelijk.

Variatie als gevolg van het model




De gemiddelden van de groepen vergelijken met het totale gemiddelde (zwarte lijn, X1).

Assumpties one-way ANOVA
We voldoen aan de assumpties als we gelijke groepen hebben en de verdeling van de
groepen willekeurig is.
Normaliteit à hier hoeven we niks mee te doen!
- Populaties zijn normaalverdeeld
- ANOVA is robuust tegen schendingen
Het random en onafhankelijk zijn van residuen
- Er zijn onafhankelijke random steekproeven getrokken
Homogeniteit van varianties
- Populaties hebben gelijke varianties
- ANOVA is robuust tegen schendingen als gelijke n’s (groepsgroottes)
- Eventueel toetsen met Levene
- Is deze assumptie fors geschonden, bijv. bij hele ongelijke groepen? Dan Welch of
Brown-Forsythe toepassen. Komt echter amper voor, want in ontwerpen wordt vaak
gezorgd voor gelijke groepen en random toewijzing.



3

,One-way anova: de F-toets
F-toets = variantie tussen (SSM) / variantie binnen (SSr).
Meer proefpersonen, meer groepen à hogere verschilscores, meer variantie.
Eerlijk vergelijken: daarom deel je de variantie door ‘aantal’. Dit aantal zijn de
vrijheidsgraden.

Vrijheidsgraden = aantal groepen – 1 & het aantal proefpersonen – het aantal groepen.
De twee vrijheidsgraden staan altijd in de output.

Overzicht:




We hopen op een grote F-waarde. Hoe groter, hoe groter de kans dat we de nulhypothese
mogen verwerpen. Maar die kans is vaak heel klein, dus dan mag je ook zeggen dat het geen
toeval meer is, maar dat is het verschil er ook daadwerkelijk.




Post-hoc toetsen
ANOVA toetst of er minsten één van de groepen afwijkt van de andere groepen (alternatieve
hypothese), maar welke groep verschilt dan van de ander? Waar zitten de verschillen?
- Twee groepen: je kunt het zelf zien
- Bij drie groepen of meer: toetsen waar de gemiddelden zitten.

Dit laatste moeten we op bepaalde manier toetsen. Het zelf los vergelijken van de groepen
zorgt namelijk voor een Type-! Fout (nulhypothese verwerpen terwijl dat eigenlijk onterecht
is).
Een Post-hoc toets houdt rekening met deze fout. Bijvoorbeeld Sidak (meest gebruikelijke) of
Tukey.




4

, Kennisclip 4 | tussenproefpersoon design | ANOVA factoriele ontwerpen
Ontwerpen met twee of meer factoren (onafhankelijke variabelen), elk met twee of meer
niveaus (levels).
Voorbeeld tweeweg ANOVA
- Motivatie heeft twee niveaus (hoog/laag)
- ‘Soort training’ kan drie niveaus hebben (zelfstudie, klassikaal en online)
- Een mogelijk onderzoek kan zijn: het aantal studie-uren in functie van training en
motivatie. De effecten die je kunt vinden zijn dan een hoofdeffect van motivatie op
studie-uren, hoofdeffect van training op studie-uren, en interactie-effect tussen
motivatie en training. Dit laatste bijvoorbeeld of het verschil tussen hoog/lage
motivatie op studie-uren afhankelijk is van type training.

Voordelen factoriele ontwerpen
- Logistiek: bespaart tijd en moeite. Je zou namelijk telkens opnieuw onderzoek
kunnen doen met een andere onafhankelijke variabele maar nu pak je ze allemaal
samen met dezelfde groep.
- Inhoudelijk: je krijgt controle over storende factoren die effect hebben op
afhankelijke variabele. Je kunt de interactie tussen variabelen onderzoeken.

Tweeweg Anova
Test of de gelijkheid van twee of meer populatiegemiddelden wanneer twee of meer
onafhankelijke variabelen worden gebruikt.
Je krijgt hetzelfde resultaten indien je apart one-way anova’s voor elke variabele zou doen,
maar daarbij heb je geen interactie-effect. In dit geval dus wel.

De assumpties voor de tweeweg ANOVA zijn hetzelfde als bij de eenweg ANOVA.

Interactie
Treedt op als het effect van de ene factor varieert al naar gelang het level van de andere
factor. Bijvoorbeeld het verschil tussen het effect van bepaalde trainingen hangt af van de
mate van motivatie (zie afbeelding).




Interactie zorgt voor nieuwe interpretatie van de hoofdeffecten: de interactie kwalificeert de
hoofdeffecten of het hoofdeffect. Eerst significantie toetsen, dan bekijken in een plot zoals
plaatje hierboven. Een plot is echter nog geen bewijs op zichzelf.




5

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller liekekleverwal. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.21. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.21  1x  sold
  • (0)
  Add to cart