100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Everything you need for the Deep Learning Exam! $9.12
Add to cart

Class notes

Everything you need for the Deep Learning Exam!

 339 views  26 purchases
  • Course
  • Institution
  • Book

All lectures including additional explanations where the lectures/slides fall short!

Preview 4 out of 78  pages

  • January 12, 2021
  • 78
  • 2020/2021
  • Class notes
  • Dr. eva vanmassenhove
  • All classes
avatar-seller
Deep Learning – Lecture 1
History

● Perceptron: Frank Rosenbladt was the first to invent the Perceptron
● Back propagation: Several researchers in the 1980’s
● Big Data:
o Andrew Ng (Cat experiment)
o Fei-Fei Li (ImageNet) An image database organized according to the WordNet
hierarchy. Each node in this hierarchy represented thousands of images.
o AlexNet 🡪 Deep CNN trained on ImageNet using GPU’s



Practical Deep Learning

Although most computers (like your laptop) have a CPU (Central Processing Unit) this is not optimal
for running Deep Neural Networks. Despite the fact that it can handle a diverse workload, the
computation is done in a serial manner. This way of computation will result in very slow training.

A better approach is the use of a GPU (Graphical Processing Unit) which can only handle a specific
workload, but computes this in a parallel fashion which is much more efficient, especially since the
computations in a neural network are easy to break down in similar smaller computations. The
difference is clearly illustrated in this video. An explanation can be found here.



Deep learning environments

,Perceptron
- Most basic single-layer NN
⇒ typically used for binary classification problems (1 or 0, “yes” or “no”)
- Data needs to be linearly separable (if the decision boundary is non-linear, the
perceptron can’t be used).
- Goal: find a line that splits the data/observations




How does a perceptron work?
Our inputs (Xi) are each multiplied by weights (Wi). The outputs are combined in a summed
input function that is passed on to an activation function (Step function). The activation
function determines if the network classifies the input (y’) as 1 or 0 based on a threshold (t)

,NOTE: one f the inputs is the bias. Without the bias, the function has to go through the
origin, and that is not always what we want!




Activation function
● the output node has a threshold t
○ if summed input ≥ t, then it ‘fires’ (output y’=1)
○ if summed input < t, then it doesn’t ‘fire’ (output y’=0
● We can rewrite the activation function. t is moved to the other side of the equation
creating a situation where:
○ 0 or higher = 1
○ Lower than 0 = 0
NOTE: Eva: Threshold = bias




Update rule

How can the perceptron now learn a good set of weights/bias? If the expected output is not
equal to the observed output (i.e. y’ ≠ y) the weights (and bias) need to be updated
accordingly:

If y’ is not equal to y, then the learning rate
and xi will be multiplied by either -1 or 1.
→ as this resulting value is added to wi, the
weight will bet smaller/larger
→ e.g. wi + 0.1 * xi * (-1) < wi

, If y and y’ are equal, the learning rate and xi will be multiplied by 0.
→ wi + 0 = wi → therefore the weights won’t change if the prediction was correct.

AND Gate
AND gate fire 1 ONLY when both inputs are 1.
In the example below we can see how the w&b are adjusted as we train. In this example, X3
is the bias and W3 is the weight that corresponds to the bias. We have a learning rate of 1.

● We see that the first example yields: y’= 1
while y = 0
→ this leads to an update rule:
○ w1_new = 0.5 + 1 * 0 * (-1) = 0.5
○ w2_new = 0.5 + 1 * 0 * (-1) = 0.5
○ W3_new = 0 + 1 * 1 * (-1) = -1
● The second row yields: y’ = 0 and y = 0
because:
0 * 0.5 + 1 * 0.5 + 1 * -1 = -0.5
→ because -0.5 < 0 we predict 0
→ we do not update the weights because the prediction is correct
● The same accounts for the third and fourth prediction

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jeroenverboom. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.12. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.12  26x  sold
  • (0)
Add to cart
Added