100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Theorie wiskunde A $6.96   Add to cart

Summary

Samenvatting Theorie wiskunde A

 51 views  1 purchase
  • Course
  • Institution

je vind er alle theorie van het boek wiskunde A uitgebreid uitgelegd

Preview 3 out of 24  pages

  • January 15, 2021
  • 24
  • 2020/2021
  • Summary
avatar-seller
Wiskunde theorie


1.Getallenkennis
- Functies van getallen
o Getal als hoeveelheid
 Bv 1000 mensen
o Getal als rangorde
 Als tweede
o Getal als code
 Ik neem bus 124
o Getal als verhouding
 1 op 4
- Talstelsels
o Romeinse stelsel
 Mogen max I, X, C, M mogen max 3 keer na elkaar komen
 I=1
 V=5
 X= 10
 L= 50
 C=100
 D=500
 M=1000
- Breuken
o ¼
 1= de teller
 / = de breukstreep
 4= de noemer
o Soorten breuken
 Stambreuk
 ¼
 Een breuk met teller 1
 Tiendelige of decimale breuk
 7/10
 Een breuk met als noemer een macht van 10 (bv 100, 1000, 10 000)
 Echte breuk
 3/4
 Breuk met een teller kleiner dan de noemer
 Onechte breuk
 9/9
 Breuk met een teller gelijk aan of groter dan de noemer
 Oneigenlijke breuk
 20/5 = 4 (na vereenvoudiging natuurlijk getal)
 Breuk die na vereenvoudiging een geheel getal uitkomt, een deling zonder een rest
 Gemengd getal
 3 x 8/5 = 25/5
 Getal bestaande uit een geheel gedeelte en een echte breuk
- Deelbaarheid
o Deelbaarheid door 2
 Als het laatste cijfer deelbaar is door 2
o Deelbaarheid door 5
 Als het laatste cijfer deelbaar is door 5

1

, o Deelbaarheid door 10
 Als het cijfer eindigt op 0
o Deelbaarheid door 9
 Als de som van de cijfers deelbaar zijn door 9
o Deelbaarheid door 3
 Als de som van de cijfers deelbaar zijn door 3
o Deelbaarheid door 4
 Als de laatste twee cijfers gevormd deelbaar zijn door 4
o Deelbaarheid door 25
 Als het getal gevormd door de 2 laatste cijfers deelbaar zijn door 25
o Deelbaarheid door 100
 Als het eindigt op 00
o Deelbaarheid door 8
 Als het getal gevormd door de laatste 3 cijfers deelbaar is door 8
o Deelbaarheid door 125
 Als het getal gevormd door de 3 laatste cijfers deelbaar zijn door 125
o Deelbaarheid door 1000
 Als het eindigt op 000
o Deelbaarheid door 6
 Als het getal even is en als de som van de cijfers deelbaar zijn door 3
o Deelbaarheid door 11
 als de som van de cijfers op de oneven plaatsen min de som van de cijfers op de
even plaatsen gelijk is aan 0 of 11
 Of als de som van de cijfers op de even plaatsen min de som van de cijfers op de
oneven plaatsen gelijk is aan 0 of 11
o Hoe de rest bepalen?
 Je maakt eerst gebruik van de deelbaarheid door dat getal. Als het niet deelbaar is
zoek je een veelvoud dat wel deelbaar is door dat getal. Nadien neem je het verschil
tussen het oorspronkelijke getal en het deelbaar getal.
- Veelvouden
o Grootste gemeenschappelijke deler
 = het grootste natuurlijke getal dat een deler is van beide of alle getallen
 Bv. De delers van 12 zijn 1, 2, 3, 4, 6, 12
 De delers van 8 zijn 1, 2, 4, 8
o Kleinste gemeenschappelijke veelvoud
 = het kleinste natuurlijke getal dat een veelvoud is van beide of alle getallen
 Bv. De veelvouden van 9 zijn 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, …
De veelvouden van 12 zijn 0, 12, 24, 36, 48, 60, 72, …




2

, 2. Bewerkingen

Optelling
5 + 2 = 7
Het opteltal Het plusteken De opteller Het gelijkheidsteken De som

Aftrekken
7 - 2 = 5
Het aftrektal Het minteken De aftrekker Het gelijkheidsteken Het verschil

Vermenigvuldigen
8 x 2 = 16
De vermenigvuldiger Het maalteken Het Het gelijkheidsteken Het product
vermenigvuldigtal

Deling
16 : 2 = 8
Het deeltal Het deelteken De deler Het gelijkheidsteken Het quotiënt

- Eigenschappen van bewerkingen
o Wisseleigenschap
 Bv. 23 + 745 = 745 + 23
o Schakeleigenschap
 Bv. (8+3) +7 = 8+ (3+7)
11+7 = 8+ 10
18 = 18
o Splitsen en verdelen
 Bv. 8x34
= 8 x (30 + 4)
= (8 x 30) + (8 x 4)
= 240 + 32
= 272
- Optellings- en vermeningvuldigingswip en aftrekkings- en delingshalter
o Optellingswip
 97 + 374 = 471
+3 I I -3
100 + 371 = 471
o Vermeningvuldigingswip
 25 x 92 = 2300
4x I I :4
100 x 23 = 2300
o Aftrekkingshalter
 12,48 – 4,80 = 7,68
+ 0,20 I I + 0,20
12,68 – 5 = 7,68
o Delingshalter
 1,2: 0,4 = 3
x10 I I x10
12: 4 = 3

3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller emilieremy. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.96. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

71184 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$6.96  1x  sold
  • (0)
  Add to cart