The formulas contain clear calculation errors.
By: floorstikkelbroeck • 5 year ago
Translated by Google
Stand off. And then some minor mistakes but for the rest it is a very good summary of a difficult subject
By: robertjanvogel • 5 year ago
By: sabrineagrebihammami • 5 year ago
By: rachelle_groot • 6 year ago
Seller
Follow
mhopma
Reviews received
Content preview
Samenvatting Quantum Physics I
From: Introduction to Quantum Mechanic s, by D.J. Griffiths
Door: Marenthe Hopma
07-11-2013, 2𝑛𝑑 edition “Introduction to Quantum Mechanics”
,Inhoud
1. The Wave Function ............................................................................................................................. 3
2. Time-Independent Schrödinger Equation .......................................................................................... 5
2.1 Stationary States .......................................................................................................................... 5
2.2 The Infinite Square Well ............................................................................................................... 6
2.3 The Harmonic Oscillator ............................................................................................................... 7
2.3.1 Algebraic Method .................................................................................................................. 7
2.3.2 Analytic Method .................................................................................................................... 8
2.4 The Free Particle ........................................................................................................................... 9
2.5 The Delta-Function Potential ...................................................................................................... 10
2.5.1 Bound States and Scattering States ..................................................................................... 10
2.5.2 The Delta-Function Well ...................................................................................................... 10
2.6 The Finite Square Well................................................................................................................ 11
3. Formalism......................................................................................................................................... 13
3.1 Hilbert Space .............................................................................................................................. 13
3.2 Observables ................................................................................................................................ 13
3.2.1 Hermitian Operators............................................................................................................ 13
3.2.2 Determinate States .............................................................................................................. 14
3.3 Eigenfunctions of a Hermitian Operator ..................................................................................... 14
3.3.1 Discrete Spectra .................................................................................................................. 14
3.3.2 Continuous Spectra ............................................................................................................. 14
3.4 Generalized Statistical Interpretation......................................................................................... 15
3.5 The Uncertainty Principle ........................................................................................................... 15
3.5.1 Proof of the Generalized Uncertainty Principle ................................................................... 15
3.5.2 The Minimum-Uncertainty Wave Packet ............................................................................. 16
3.5.3 The Energy-Time Uncertainty Principle ............................................................................... 16
3.6 Dirac Notation ............................................................................................................................ 16
4. Quantum Mechanics in Three Dimensions ....................................................................................... 18
4.1 Schrödinger Equation in Spherical Coordinates.......................................................................... 18
4.1.1 Seperation of Variables ....................................................................................................... 18
4.1.2 The Angular Equation .......................................................................................................... 18
4.1.3 The Radial Equation ............................................................................................................. 20
4.2 The Hydrogen Atom ................................................................................................................... 21
4.2.1 The Radial Wave Function ................................................................................................... 21
1
, 4.2.2 The Spectrum of Hydrogen .................................................................................................. 23
4.3 Angular Momentum ................................................................................................................... 24
4.3.1 Eigenvalues .......................................................................................................................... 24
4.3.2 Eigenfunctions ..................................................................................................................... 25
4.4 Spin............................................................................................................................................. 26
4.4.1 Spin ½ .................................................................................................................................. 26
4.4.2 Electron in a Magnetic Field ................................................................................................ 27
4.4.3 Addition of Angular Momenta ............................................................................................. 27
5. Identical Particles ............................................................................................................................. 29
5.1 Two-Particle Systems ................................................................................................................. 29
5.1.1 Bosons and Fermions........................................................................................................... 29
5.1.2Exchange Forces ................................................................................................................... 29
5.2 Atoms ......................................................................................................................................... 30
5.2.1 Helium ................................................................................................................................. 30
5.2.2 The Periodic Table ............................................................................................................... 31
5.3 Solids .......................................................................................................................................... 32
5.3.1 The Free Electron Gas .......................................................................................................... 32
5.3.2 Band Structure ..................................................................................................................... 33
5.4 Quantum Statistical Mechanics .................................................................................................. 34
5.4.1 An Example .......................................................................................................................... 34
5.4.2 The General Case ................................................................................................................. 35
5.4.3 The Most Probable Configuration ....................................................................................... 35
5.4.4 Physical Significance of 𝜶 and 𝜷 .......................................................................................... 36
5.4.5 The Blackbody Spectrum ..................................................................................................... 38
2
, 1. The Wave Function
To describe the position of a particle at any given time, we use a wave function, called the
Schrödinger Equation:
𝜕𝜓 ℏ2 𝜕 2 𝜓
𝑖ℏ =− + 𝑉𝜓
𝜕𝑡 2𝑚 𝜕𝑥 2
ℎ
Where ℏ = = 1.054572 ∙ 10−34 𝐽𝑠
2𝜋
We define the probability of finding a particle between a and b, at time t as:
𝑏
𝑃 = ∫ |𝜓(𝑥, 𝑡)|2 𝑑𝑥
𝑎
Out if this equation, it follows that the integral |𝜓|2 must be 1 (the particle has to be somewhere).
∞
∫ |𝜓(𝑥, 𝑡)|2 𝑑𝑥 = 1
−∞
So now if 𝜓(𝑥, 𝑡) is a solution to our Schrödinger Equation, then so is 𝐴𝜓(𝑥, 𝑡), where 𝐴 ∈ 𝕔. We can
find a by solving the square integral of 𝐴𝜓(𝑥, 𝑡). This is called normalizing the wave function.
For a particle in state 𝜓, the expectation value of x is given by the equation:
+∞
〈𝑥 〉 = ∫ 𝑥|𝜓(𝑥, 𝑡)|2 𝑑𝑥
−∞
Now as time goes on, 〈𝑥 〉 will change (because of the time dependence of 𝜓), and we might be
interested in knowing how fast it moves. We find that:
𝑑 〈𝑥 〉 𝜕 𝑖ℏ 𝜕 𝜕𝜓 𝜕𝜓 ∗
= ∫ 𝑥 |𝜓|2 𝑑𝑥 = ∫ 𝑥 (𝜓 ∗ − 𝜓) 𝑑𝑥
𝑑𝑡 𝜕𝑡 2𝑚 𝜕𝑥 𝜕𝑥 𝜕𝑥
𝜕𝑥
We can simplify this expression by using integration-by-parts. = 1 and because 𝜓 goes to zero at
𝜕𝑥
(±∞), we can throw away the ground term. Using now another integration-by-parts:
𝑑 〈𝑥 〉 𝑖ℏ 𝜕𝜓
=− ∫𝜓 ∗ 𝑑𝑥 = 〈𝑣 〉
𝑑𝑡 2𝑚 𝜕𝑥
This equation tells u show to calculate 〈𝑣 〉 directly from 𝜓. However, it is more customary to work
with momentum (p = mv), rather than velocity:
𝑑 〈𝑥 〉 𝜕𝜓
〈𝑝 〉 = 𝑚 = −𝑖ℏ ∫ (𝜓 ∗ ) 𝑑𝑥
𝑑𝑡 𝜕𝑥
The expressions obtained for 〈𝑥 〉 and 〈𝑝〉 now are:
〈𝑥 〉 = ∫ 𝜓 ∗ (𝑥)𝜓𝑑𝑥
ℏ 𝜕
〈𝑝 〉 = ∫ 𝜓 ∗ ( ) 𝜓𝑑𝑥
𝑖 𝜕𝑥
3
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller mhopma. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.23. You're not tied to anything after your purchase.