BRM2 - STATA EXAMPLES FROM LECTURES WITH (THEORY) EXPLANATION
All for this textbook (2)
Written for
Technische Universiteit Eindhoven (TUE)
Psychology And Technology
Behavioral Research Methods 2: Dealing With Data
All documents for this subject (3)
Seller
Follow
BakedToast
Reviews received
Content preview
Behavioural Research Methods 2
BRM2
Summary of Lectures
BakedToast
EINDHOVEN UNIVERSITY OF TECHNOLOGY
, CONTENTS:
LECTURE 1: ........................................................................................................................................ 4
Kinds of variables:.......................................................................................................................... 4
Roadmap/Learning objectives ....................................................................................................... 5
LECTURE 2 ......................................................................................................................................... 5
Stappenplan Statistics:................................................................................................................... 6
Terminology: ................................................................................................................................. 6
About P-value: ............................................................................................................................... 6
Central limit theorem: ................................................................................................................... 7
Getting an intuition for confidence intervals: ................................................................................. 7
How to calculate confidence interval: ............................................................................................ 7
LECTURE 3 ......................................................................................................................................... 8
Fisher’s exact: The procedure (Example 1.2) ......................................................................... 9
Fisher’s exact in stata: ................................................................................................................... 9
Stata: ............................................................................................................................................. 9
STATA: ......................................................................................................................................... 10
LECTURE 4: ...................................................................................................................................... 11
One continuous and one (binary) categorical variable:................................................................. 11
Test-statistic: ............................................................................................................................... 12
Information about t: .................................................................................................................... 12
Recap procedure for all statistical tests:....................................................................................... 12
On one- and two-sided (or -tailed) tests....................................................................................... 12
Assumption 1: Normality ............................................................................................................. 12
Shapiro-Wilk test for normality (Swilk)......................................................................................... 13
Test for skewness and kurtosis (sktest) ........................................................................................ 13
Testing for normality in Stata: ...................................................................................................... 13
Assumption number 2: Testing for equality of variance ............................................................... 13
Transform your data: workflow step 2 → .................................................................................... 13
Stata: the ladder command (Example 2) ............................................................................ 14
When transformations do not work: ranksum and median test (book 7.11) ................................. 14
Effect size: Cohen’s D................................................................................................................... 15
Interpretation of effect size: ........................................................................................................ 15
Paired t-test: (Example 2.3) ................................................................................................ 15
LECTURE 5 ....................................................................................................................................... 16
Learning objectives: ..................................................................................................................... 16
, Graphs in Stata: ........................................................................................................................... 16
Correlation: How close are data points to the regression line? ..................................................... 17
Correlation r and R2 ..................................................................................................................... 17
Significance of correlation: .......................................................................................................... 18
Calculating Correlation (and its significance) in Stata ................................................................... 18
The target variable and the predictor: ......................................................................................... 18
Changing the Variables: ............................................................................................................... 19
Standardization of variables: ....................................................................................................... 19
Understanding or predicting? ...................................................................................................... 19
LECTURE 6 ....................................................................................................................................... 20
Learning objections: .................................................................................................................... 20
Multiple regression (1Y, more X’s) : ............................................................................................. 20
MODEL FIT: .................................................................................................................................. 21
Model fit notations/definitions: ................................................................................................... 21
Introducing: The adjusted R2 ........................................................................................................ 21
From sample to population:......................................................................................................... 21
Multiple regression:..................................................................................................................... 22
Going through a regression table: ................................................................................................ 22
Technically… ................................................................................................................................ 22
Including a categorical variable with more than 2 categories: ...................................................... 22
The test-command (revisited). ..................................................................................................... 23
Some background information on multiple regression: ................................................................ 23
Notations/definitions: ................................................................................................................. 24
Why is it beautiful: ...................................................................................................................... 24
Regression vs t-test: .................................................................................................................... 25
LECTURE 7: ...................................................................................................................................... 26
Learning objectives: ..................................................................................................................... 26
Multiple regression – refreshing summary of lecture 6 ................................................................ 26
Components of a regression run: ................................................................................................. 26
Ramsey’s ‘omitted variable test’ (a misleading name) .................................................................. 28
Multiple regression is much less a standard recipe: ..................................................................... 31
The multiple regression lectures summary:.................................................................................. 31
LECTURE 8: ...................................................................................................................................... 32
Assumptions in regression analysis: ............................................................................................. 32
Part 1: No multi-collinearity: Your predictor variables should not be too alike ............................. 33
Checking correlations: (Detect 1) ................................................................................................. 33
, Calculating Variance inflation factors (VIF) Statistics (Detect 2) .................................................... 33
Part 2: All relevant predictor variables included ........................................................................... 33
Step 3/4: Homoscedasticity and linearity ..................................................................................... 34
Assumptions in regression analysis: ............................................................................................. 34
Checking plots: ............................................................................................................................ 34
Rvfplot (“residual versus fitted plot”) ........................................................................................... 35
Avplots (“added variable plots”): ................................................................................................. 35
White’s test for heteroscedasticity: ............................................................................................. 35
Stata Heteroscedasticity: ............................................................................................................. 35
When do you get heteroscedasticity? .......................................................................................... 36
Solutions to heteroscedasticity/nonlinearity (continued) ............................................................. 36
Step 5: Independent Errors .......................................................................................................... 36
Step 6: The noise should be distributed normally......................................................................... 37
Not too many non-significant predictor variables ........................................................................ 37
Stepwise regression: NO .............................................................................................................. 38
A standard multiple regression run .............................................................................................. 38
Typical assignment Exam/Statistics: ............................................................................................. 38
LECTURE 9: ...................................................................................................................................... 39
Learning objectives: ..................................................................................................................... 39
General information: ................................................................................................................... 39
Stata commands: ......................................................................................................................... 39
X → Y: An(c)ova ........................................................................................................................... 40
ANOVA Assumptions: .................................................................................................................. 40
ANCOVA: Adding a covariate ....................................................................................................... 41
ANcOVA Assumptions:................................................................................................................. 41
2-Way ANOVA (or Factorial ANOVA) ............................................................................................ 41
Recap: AN(c)OVA: ........................................................................................................................ 41
LECTURE 10: .................................................................................................................................... 42
Sample size determination: ......................................................................................................... 42
How much power is enough?....................................................................................................... 43
Stratified samples: Smarter than random sampling...................................................................... 44
RECAP:......................................................................................................................................... 45
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller BakedToast. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.25. You're not tied to anything after your purchase.