100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary food microbiology FHM20306 $5.34
Add to cart

Summary

Summary food microbiology FHM20306

 0 purchase
  • Course
  • Institution

All including summary food microbiology FHM20306

Preview 3 out of 22  pages

  • January 31, 2021
  • 22
  • 2020/2021
  • Summary
avatar-seller
SPOILAGE

Decrease quality of food product
Sustainability planet
Food security (enough to eat) waste and need of food (hunger)

Microbial spoilage
Reactions occur 107 cfu/gram or ml  spoilage noticeable (smell, slime, color change)
Growth is needed to get spoilage, organisms are in products but can only grow (growth = exponential) when the conditions
change
1 organism  107 organisms in 8 hours under optimal conditions

Quantification: calculation with well-chosen unit and appropriate number of significant digits

Kinetecs influenced by:
- Intrinsic factors: chemical (nutrients, pH, aw, preservation)
- Extrinsic factors: environment (temperature, relative humidity, gas)
- Implicit factors: properties/interactions mo (umax, interactions, succession in time)
- Processing factors: contamination/ change of in- or extrinsic factors

Initial contamination: animals/plants contain mo
- Animals: intestines/skin
- Plants: soil/manure/water

Secondary contamination:
- Water: process, rinsing, cooling, cleaning
- Equipment: machines, tools, surfaces
- Air: aerosols, dust
- People: hands, hair, coughing, sneezing
- Vermin: rodents, birds, insects


HISTORY OF FOOD
Mo (threaten us, bother us, help us): Antoni van leeuwenhoek
Pasteurisation: louis Pasteur
Methods to store food
- Prehistory: hunting and food gathering (storage)
- 15000 BC: domestic production of animals and crops, kept dry, away from air & light, salting, olive oil, honey, air
drying, smoking, fermentation

Development of regulation:
AD: prohibition
Romans: not allowed to sell spoiled food
Leo VI: forbid blood sausages
Swiss cities: prohibited to sell fish from the day before

Since 1960: science, industry
1900: microbial testing, pasteurization
1922: can sterilization
1930: pasteurization
1960: GMP
1971: HACCP
1980: start of quantitative microbiology
1995: QRA

SOURCES OF CONTAMINATION
Bacteria: (1-5 um)
Cocci: Rods: Other shapes:

,Fungi: (10 um)
Yeast Moulds




Viruses: (40x smaller than cocci) need a host to multiply
Parasites need a host

Mo are everywhere but they need a good environment to grow, environment selects


MICROBIAL GROWTH


GROWTH KINETICS AND FACTORS INFLUENCING GROWTH
Bacterium well adapted to environment and enough nutrients  multiply
Generation time (=gt): time needed to double
t=0 min t=20 min t=40 min t=60 min t=8h
Generation 0 Gen 1 Gen 2 Gen 3
1 organism 2 organisms 4 organisms 8 organisms
20=1 21=2 22=4 23=8 224=1,7*107

Log N(t) = Log N(0) + (Log(2)/gt) * t

Worst case: exponential growth
lnN(t) = lnN(0)+u(=specific growth rate)*t
u = ln(2)/gt

Shelf life t=(lnN(t) – lnN(0))/u
Extension shelf life: decrease growth rate/decrease initial level of
contamination


NUTRIENTS AND STRUCTURES (INTRINSIC FACTORS)
Mo are organisms that have metabolism (catabolism: the metabolic routes that are involved in the degradation of a carbon-
and energy source to generate precursors for cell components and energy for cell maintenance & anabolism: the metabolic
routes involved in the biosynthesis of polymeric cell compounds (DNA, RNA, protein, lipids, cell wall constituents))
Chemo-heterotrophs: use preformed molecules from other organisms as energy and carbon source
Enzymes are important in metabolism: help to transform substrate (“food”) in products (“metabolites”)

food may contain:
- Starch, glycogen, lactose, glucose
- Protein, peptides, amino acids
- Lipids, free fatty acids
- Spore elements
- Vitamins
- Water

Protect nutrients:
- Physical barrier (for example shell of nuts)
- Macromolecules resistant to degradation (for example peel of fruit or fatty lining of meat)
- Aim: hinder growth: lack of access to water/nutrients, no protection against environment

Enzymes that break down barriers:

, Nutrients and barriers in preservation:
- Product formulation: increase or decrease nutrients (fermentation)
- Processing: introduce of remove barriers (water in oil emulsion = corporatization)


PH AND PRESERVATION BY ACID
pH: acidity of substance
pH = -log[H+]
Acid <7, neutral 7, alkaline > 7

Preferences mo:
Most: pH +/- 7
Yeast: pH 4,5
Moulds: pH 3,5

Difference between acids:
- Strong acids: totally dissociated
- Weak acids: pH=pKa+log([A-]/[HA])

Reduce growth rate using weak acids: higher pka  more HA  HA can enter cell  reduce growth rate
Fermentation: lactic acid  lower pH  HA can enter cell
Acid preservative: lover pH

Pathogenic bacteria can still grow, inactivate these with for example sterilization


WATER ACTIVITY (INTRINSIC) AND RELATIVE HUMIDITY (EXTRINSIC) (AW AND RH)
Aw: free water available
Aw = P (food) / Po (water)

Reduce aw by adding solutes (salt, sugar) or by removing
water (freezing,drying)

Local changes in aw
- Bulk commodities and packaged products:
 Sun: T up, water evaporates
 Sun down: T down, water condensates in
package
- Effect accelerated by mo (for example: fungi
produce moisture allow other organisms to
grow faster)

Product reformulation:
- Health
- Real life example
- Effect new product formulation
- Effect of people


REDOX POTENTIAL/GASEOUS ATMOSPHERE
Redox potential (eh)= tendency of a medium to accept or donate electrons
Redox reactions: oxidant + H+ + ne  reductant (en omgekeerde reactie)

Medium saturated with air: high eh (400mV)
Oxygen from atmosphere can acts as electron accepter, yielding reactive substances
O2 + 2H+ + e  H2O2 (hydrogen peroxide)
O2 + e  O2- (superoxide anion radical)

Aerobic organisms: most energy via oxidative phosphorylation with O 2 as terminal electron accepter
Enzymes disable toxic products of oxygen
SOD: 2O2- + 2H+  H2O2 + O2
Catalase: 2H2O2  2H2O + O2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller nlaalbers. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.34. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

65507 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$5.34
  • (0)
Add to cart
Added