100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Lista de problemas ÁLGEBRA LINEAL $3.78   Add to cart

Class notes

Lista de problemas ÁLGEBRA LINEAL

 18 views  0 purchase
  • Course
  • Institution

Lista de problemas de ÁLGEBRA LINEAL de 2020/2021 con exámenes de años anteriores.

Preview 4 out of 49  pages

  • February 3, 2021
  • 49
  • 2020/2021
  • Class notes
  • Enrique
  • All classes
avatar-seller
Col·lecció de problemes d’àlgebra lineal
Enginyeria quı́mica i enginyeria de materials
Universitat de Barcelona
Curs 2020–2021




1

,Problemes d’Àlgebra Lineal Grau d’Enginyeria Quı́mica
Curs 2020–2021 Grau d’Enginyeria de Materials


Continguts
1 Matrius i sistemes d’equacions 3

2 Determinants 6

3 Espais Vectorials 9

4 Aplicacions Lineals 13

5 Nombres Complexos 17

6 Polinomis 18

7 Diagonalització 19

8 Producte escalar euclidi 22

9 Exàmens i controls 24

,Problemes d’Àlgebra Lineal Grau d’Enginyeria Quı́mica
Curs 2020–2021 Grau d’Enginyeria de Materials


1 Matrius i sistemes d’equacions
1. Donades les matrius següents, indiqueu quantes files i quantes columnes té cadascuna i decidiu
quines parelles es poden sumar i quines es poden multiplicar, i en quin ordre. Efectueu totes
les operacions possibles.
   
1  1 7
A = 2 , B = 5 2 −1 , C = −2 4 ,
3 0 3
   
7 5 2 −1  
1 7 2
D = 0 , E = 3 3 3 , F = .
−2 4 1
0 0 0 0

2. Amb les matrius del problema anterior, decidiu si les operacions següents són possibles i, en
cas afirmatiu, efectueu-les.

A · DT + E + F · C, (A + D) · E, B · E · C · F, (B + E) · C.

3. Demostreu que el producte de matrius diagonals és commutatiu. Doneu un exemple de dues
matrius triangulars que no commutin entre elles.
4. Calculeu el rang de les matrius següents utilitzant el mètode de Gauss. Decidiu si tenen inversa
i, en cas afirmatiu, calculeu-la.
 
    1 1 −1 1
2 3 4 −2 1 −1 1 1 1
1 −1 −2  1 −1 ,
5 , 0 1 0 , 0 1 1 0
4 1 0 8 1 1 −1
1 0 0 1
     
1 2 1 1 −1 2 −2 1 1
−2 1 −2 , −1 2 1 ,  0 1 −1 .
1 0 1 −1 3 4 1 1 1

5. Decidiu si les matrius següents tenen inversa i, en cas afirmatiu, calculeu-la.
           
2 0 5 0 2 3 0 1 1 1 2 1
, , , , , .
0 3/2 0 0 0 1 0 1 −1 2 4 2

6. Donats els sistemes d’equacions següents, escriviu-los en forma matricial, decidiu si tenen
solució i, en cas afirmatiu, trobeu totes les solucions.
  
x + y + z = 2 x + y + z = 2 x − y + z = 2

2x + 3y − 2z = 7 , 2x + 3y − 2z = 7 , 2y − 3z = 7 ,

 
 

−x − 5z = 3 −x − 5z = 1 −x + y − 2z = 3

x + y + 2z − t = 1  

 2x − y + 2z − t = 2
x + y + 2z + t = −1  
, x + y − 2z + 2t = 3 .
x + y − z + 3t = 0  


 −x + 2y − 4z + 3t = 1
−x + 2y − 2z = −2

, Problemes d’Àlgebra Lineal Grau d’Enginyeria Quı́mica
Curs 2020–2021 Grau d’Enginyeria de Materials


7. Trobeu els valors del paràmetre m que fan compatible el sistema d’equacions

5x + 3y = 3

5x + 2y = 2 .


5x + my = 2

8. Discutiu, segons els valors dels paràmetres a i b, els sistemes d’equacions següents:
 
x + y + az = 1
 
 ax + y + az = 1
(i) x − ay + z = −1 (ii) x−y+z =b

 

x + ay + z = b ax + (a − 1)y − z = −1

9. Discutiu i resoleu els sistemes d’equacions lineals següents:
 
 x − 3y + 2z = 6
 


2x − y + 3z + t − 3u = 2
(i) 2x + y − 5z = −4  3x − 2y + z − t − 2u = 4

 (iii)
2x − 13y + 13z = 28 
 4x + 5y − z − 3t − u = 6


x − 2y + 2z + 2t + 4u = −3

 x + y + iz + t = 0
 

 2x − y + 2z − t = 1
 3x + 2y + z = 1

(iv)
(ii) 5x + 3y + 4z = 2 
 x + iy − z + it = 2

 

x+y−z =1 x+y+z−t=0
 

 8x + 6y + 5z + 2t = 21 
 x + 2y + z + t = 3

 

 
 3x + 3y + 2z + t = 10
 x + 4y + 5z + 2t = 2

(v) 4x + 2y + 3z + t = 8 (vii) +2y + 4z + t = −1

 


 7x + 4y + 5z + 2t = 18 
 x − 3z = 4

 

 
3x + 5y + z + t = 15 4x + 6y + 3t = 13
 

 2x + 3y + z + 2t = 4 
 x + 2y + z + t = 1

 


 4x + 3y + z + t = 5 
x + 4y + 5z + 2t = 1
 
(vi) 5x + 11y + 3z + 2t = 2 (viii) +2y + 4z + t = 1

 


 2x + 5y + z + t = 1 
 x − 3z = 1

 

 
x − 7y − z + 2t = 7 4x + 6y + 3t = 1

10. Discutiu i resoleu els sistemes següents, segons els valors dels paràmetres:
 
 2x + y − z = 3
  x + 3y = 2a

(i) x + my + z = 3 (iii) x+y =5

 

3x + y − mz = 4 2ax + 6y = a + 3


 

 2x − ay = 1 
 x + my + z = 1
(ii) −x + 2y − az = 1 (iv) mx + y + (m − 1)z = m

 

−y + 2z = 1 x+y+z =m+1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jzhouzhou. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.78. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

58426 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.78
  • (0)
  Add to cart