100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Computersessies Onderzoeksmethodes In Finance $7.00   Add to cart

Other

Samenvatting Computersessies Onderzoeksmethodes In Finance

 100 views  6 purchases
  • Course
  • Institution
  • Book

Samenvatting van de computersessies met uitleg van begrippen, werkwijze, formules, interpretaties van alle oefeningen en afbeeldingen van de regressie output prof: Koen Inghelbrecht Vak: Onderzoeksmethoden In Finance

Preview 4 out of 132  pages

  • February 15, 2021
  • 132
  • 2020/2021
  • Other
  • Unknown
avatar-seller
Inhoud
Computersessie 1: Introduction .................................................................................................... 4
1 Inspect Excel file .......................................................................................................................... 4
2 Import data.................................................................................................................................. 4
3 Transform data ............................................................................................................................ 4
4 Plot Data ...................................................................................................................................... 5
4.1 Time series plot ................................................................................................................... 5
4.2 XY-plot ................................................................................................................................. 6
4.3 Histogram ............................................................................................................................ 6
5 Normality test.............................................................................................................................. 6
6 Descriptive statistics .................................................................................................................... 7
6.1 Mean and variance .............................................................................................................. 7
6.2 Correlations ......................................................................................................................... 8
7 Exercise: “Equity” ........................................................................................................................ 9
Computersessie 2: Classical Linear Regression Model (CLRM) ...................................................... 13
8 Simple regression ...................................................................................................................... 13
8.1 Example: CAPM ................................................................................................................. 13
8.2 OLS-regressie ..................................................................................................................... 13
8.3 Residuals ............................................................................................................................ 15
8.4 R²: goodness of fit strategies ............................................................................................ 16
8.5 Statistical tests................................................................................................................... 17
9 Exercise: “Equity” ...................................................................................................................... 23
10 Multiple regression.................................................................................................................... 31
10.1 OLS estimation of multiple regression .............................................................................. 31
10.2 Residuals ............................................................................................................................ 33
10.3 Detection of outliers.......................................................................................................... 33
10.4 Dealing with outliers.......................................................................................................... 35
11 Regression with dummy variables............................................................................................. 37
Computersessie 3: CLRM Assumptions and Diagnostic Tests ........................................................ 39
12 Pitfalls in regression models using cross-sectional data ........................................................... 39
12.1 Omitted variable basis ....................................................................................................... 39
12.2 Multicollinearity ................................................................................................................ 41
1

,12.3 Omitted variable bias vs. multicollinearity ........................................................................ 43
12.4 Heteroskedasticity ............................................................................................................. 43
13 Working with time series data .................................................................................................. 52
13.1 Example: “Microsoft” ........................................................................................................ 52
13.2 Simple regression model ................................................................................................... 52
13.3 Outliers .............................................................................................................................. 54
14 Pitfalls using time series variables ............................................................................................. 57
14.1 Omitted variable bias ........................................................................................................ 57
14.2 Multicollineariteit .............................................................................................................. 59
14.3 Heteroskedasticiteit .......................................................................................................... 60
15 Additional pitfall: Residual autocorrelation .............................................................................. 63
15.1 Detection ........................................................................................................................... 63
15.2 Example: “badnews” ......................................................................................................... 68
16 Exercises .................................................................................................................................... 75
16.1 Exercise: “Wage discrimination” ....................................................................................... 75
16.2 Exercise: “Earnings” ........................................................................................................... 82
16.3 Exercise: “Philips curve” .................................................................................................... 90
Computersessie 5: Non-Stationarity and Unit Root Testing .......................................................... 95
17 Detecting nonstationary time series ......................................................................................... 95
17.1 Example: “Stock prices on NYSE” ...................................................................................... 95
17.2 Time series plot ................................................................................................................. 95
17.3 Autoregressive model........................................................................................................ 96
17.4 Unit root test ..................................................................................................................... 97
18 Exercise: “Interestrates”.......................................................................................................... 102
Computersessie 7: Models for Panel Data ..................................................................................107
19 Panel data ................................................................................................................................ 107
19.1 Example: “Airline” ........................................................................................................... 107
20 Panel data models ................................................................................................................... 109
20.1 Steps to follow ................................................................................................................. 109
20.2 Pooled OLS: Estimation ................................................................................................... 109
20.3 Individual effects models................................................................................................. 111
21 Exercise: “Panel” ..................................................................................................................... 118
Computersessie 8: Limited Dependent Variable Models .............................................................122
2

,22 Limited dependent variable models (LVD) .............................................................................. 122
22.1 Example: “Split ratings” ................................................................................................... 122
22.2 Linear probability model ................................................................................................. 123
22.3 Logit and probit models .................................................................................................. 125
23 Exercise: “Default”................................................................................................................... 129




3

, Computersessie 1: Introduction
1 Inspect Excel file
• Kijken hoe Excel file is opgesteld
• moeten er transformaties gedaan worden
• wat is eerste kolom/rij
• …


2 Import data
Toolbar: File/Open Data/User File

Save:
Toolbar: File/Save Data

Goed opletten welk type financiële data:
• time series (= var. varieert doorheen tijd)
• cross-sectional (= data over bv. verschillende bedrijven)
• panel (= data doorheen tijd, over verschillende bedrijven)


3 Transform data
(indien nodig!)


Generate new variable:
Toolbar: Add/Define new variable...
Compute return based on total return index (TRI) and define it as R
R = (TRI-TRI(-1))/TRI(-1) (= rendement fortis)

Exercise: Compute market return based on BEL-20 total return index (BEL20) and define it as RM:
RM= (BEL20 -BEL20(-1))/BEL20 (-1)(= rendement markt)

Exercise: Compute return based on price index (PI) and define it as R2.
R2= (PI-PI(-1))/PI(-1) (=rendement prijsindex (PI))

Build in options: log, squares, etc
Select variable(s),
Toolbar: Add/Logs of selected variables
Toolbar: Add/Squares of selected variables




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller ZiziCoincoin. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67866 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.00  6x  sold
  • (0)
  Add to cart