100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Natuurkunde met Elementen van Wiskunde 1 (K01B4A) op basis van Physics for Scientists & Engineers with Modern Physics, ISBN: 9781292020761 $9.75   Add to cart

Summary

Samenvatting Natuurkunde met Elementen van Wiskunde 1 (K01B4A) op basis van Physics for Scientists & Engineers with Modern Physics, ISBN: 9781292020761

1 review
 159 views  5 purchases
  • Course
  • Institution
  • Book

Uitstekende samenvatting op basis van alle slides gebruikt tijdens de colleges en het handboek Physics for Scientists & Engineers with Modern Physics. Bevat alle theoretische concept-testen die tijdens de colleges behandeld werden, alle formules die je nodig hebt om de oefeningen van de oefenzittin...

[Show more]

Preview 6 out of 45  pages

  • No
  • Hoofdstuk 2-5, 7-11, 13-14, 16-19, 32-33
  • February 15, 2021
  • 45
  • 2020/2021
  • Summary

1  review

review-writer-avatar

By: HeavenlyKnaepen • 2 year ago

avatar-seller
Samenvatting Natuurkunde (Prof Wagner)
WISKUNDIGE BEGRIPPEN & TECHNIEKEN
- Basisfuncties
Veeltermfuncties:

Functie y = 3x + 5 met 3 = richtingscoëfficiënt
dus 3 = tan(θ )

Goniometrische functies:

Boog( A−B)
Hoek α (¿ radialen)=
Straal r (M −B of M − A)

360° = 2πrad

Y = sin(α) X = cos(α)

sin(x) functie:

 y = 0 -> 0 rad
 y = 1 -> π/2 rad
 y = 0 -> π rad
 y = -1 -> 3π/2 rad

cos(x) functie:

 y = 1 -> 0 rad
 y = 0 -> π/2 rad
 y = -1 -> π rad
 y = 0 -> 3π/2 rad

Exponentiële & Logaritmische functies:
x
F ( x )=a

F ( x )=a log x



- Limieten
lim ( f ( x ) + g ( x ) ) =¿ lim f ( x ) +¿ lim g ( x ) ¿ ¿
x→ a x→ a x →a


lim ( f ( x ) ∙ g ( x ) )=¿ lim f ( x ) ∙ lim g ( x ) ¿
x→ a x→ a x→ a


lim f ( x )
f (x)
lim
x→ a ( ) g(x)
=¿
x →a
lim g ( x ) ¿
lim g ( x ) x→ a
x→a

, - Afgeleiden
Afgeleide in een punt:

∆ y y ( x +∆ x )− y ( x )
=
∆x ∆x

dy = y ' dx= ( dydx ) dx
Rekenregels afgeleiden:
d
( k ) =0
dx
d k
( x )=k x k−1
dx
d d d
( yz )=z ( y )+ y ( z )
dx dx dx
d d d
( yz )=z ( y )+ y ( z )
dx dx dx
d
(sin( x))=cos ⁡( x )
dx
d
(cos( x ))=−sin( x )
dx
d kx
( e )=k e kx
dx
d 1
( ln( x) )=
dx x

x’’(t) = v’(t) = a(t)



Met hoeveel % neemt V van een bol toe als R toeneemt met 1%:
4
V = π R3
3
∆ V dV
≈ =4 π R2 ↔ ∆ V =4 π R2 ∙ ∆ R
∆ R dR
2
∆V 4 π R ∙∆ R 3∙∆R
= =
V 4 3 R
πR
3

,∆R ∆V 3∙∆ R
=1 % dus = =3 %
R V R




- Integralen

∫ k u ( x ) dx=k ∫ u ( x ) dx
k +1
∫ ( x k ) dx= x k+1
+C

1
∫ x dx=ln ( x ) +C
1
∫ ( e kx) dx= k e kx +C
∫ ln ( x ) dx=x ln (x )−x+ C
∫ sin ( x ) dx=−cos ( x ) +C
∫ cos ( x ) dx=sin ( x ) +C
Partiële integratie:

∫ f ( x ) ∙ g ' ( x ) dx=f ( x ) ∙ g ( x )−∫ g ( x ) ∙ f ( x ) dx
b a

∫ f ( x ) dx=−∫ f ( x ) dx
a b


Gemiddelde snelheid tussen a en b (in seconden):
b
1
¿ v(t)>¿ ∫ v ( t ) dt
b−a a



- Differentiaalvergelijkingen
Differentiaalvergelijking = vergelijking waar afgeleiden in voorkomen

Eerste orde differentiaalvergelijking = vergelijking met een afgeleide van
de eerste orde

Tweede orde differentiaalvergelijking = vergelijking met een afgeleide van
de tweede orde

Homogene differentiaalvergelijking: f(x) = 0

Niet-homogene differentiaalvergelijking: f(x) ≠ 0

,Lineaire differentiaalvergelijking bevat geen machten van afgeleiden



Stappen van differentiaalvergelijkingen:

 Scheiden van veranderlijken
 Integratie
 E-macht berekenen
 Oplossen naar x



- Eenheden & Dimensies
1mL = 1 (cm)^3 1L = 1 (dm)^3 1000L = 1 m^3



- Assenstelsel
Vergelijking cirkel: (x2 – x1)² + (y2 – y1)² =


 Straal cirkel = R
 Coördinaten middelpunt cirkel (x1,y1)

Vergelijking vlak: ax + by + cz = d

 Vlak xz heeft y = 0
 Vlak yz heeft x = 0
 Vlak xy heeft z = 0

Afstand van P(x1,y1,z1) – Q(x2,y2,z2) in de ruimte =
2 2 2
√ ( x 2−x 1 ) +( y 2− y 1 ) ( z 2−z 1 )

- Vectoren
a=√ x + y (vlak) of √ x 2+ y 2 + z 2 (ruimte)
2 2



⃗ ( ax , a y , a z ) ⋅ ( b x , b y , b z )=a x ⋅ b x + a y ⋅ b y + az ⋅ b z
a⃗ ⋅ b=


a⃗ ⋅ b=a ⋅ b ⋅ cos(θ)

, ax bx
ay


()( )(
by a y ⋅b z−a z ⋅b y
a⃗ × ⃗b= a z × bz = a z ⋅ b x −a x ⋅ b z
ax
ay
bx
by
a x ⋅b y −a y ⋅b x )
a⃗ × ⃗b=¿ vector met grootte a ⋅ b ⋅sin ( θ ) -> staat loodrecht op het vlak
gevormd door a⃗ en b⃗



- Logaritmische Schalen
log ( xy)=log ( x ) + log ( y )

x
log ( )=log ( x )−log ( y )
y

y
log ( x )= y log ( x )



MECHANICA
Studie van de beweging:

 Kinematica: hoe bewegen voorwerpen?
 Dynamica: waarom bewegen voorwerpen?



- Lineaire Beweging
Δv Δx v 0 +v Δx
a= v= v= =
Δt Δt 2 Δt

Als je een bal recht omhoog gooit:

 Is de versnelling in elk punt hetzelfde
 Is de snelheid in het hoogste punt 0
 Is de versnelling in het hoogste punt verschillend van 0

Persoon A gooit een bal naar beneden en persoon B laat een bal
tegelijkertijd gewoon vallen -> de versnelling net na het loslaten van de
bal is bij beide A en B hetzelfde

Persoon A gooit een bal naar beneden en persoon B gooit een bal naar
boven, beide met beginsnelheid v0 -> beide ballen raken de grond met
dezelfde snelheid v

, Je gooit een steen verticaal van een berg, wanneer de steen 4m ver naar
beneden is gooi je nog een steen naar beneden -> tijdens de val vergroot
de afstand tussen de 2 stenen



- Beweging in 2 of 3 Dimensies (vlak of ruimte)
v x =v ⋅ cos θ v y =v ⋅ sin θ v y =v x ⋅ tanθ v=√ v 2x + v 2y

Bal 1 valt verticaal naar beneden en bal 2 wordt horizontaal afgeschoten -
> beide ballen komen op hetzelfde moment op de grond aan

Een balletje wordt verticaal naar boven afgeschoten uit een horizontaal
bewegende kar -> de bal belandt net achter de kar, ook al rolt de kar van
een berg

- Wetten van Newton
Kracht = datgene wat de snelheid van een voorwerp doet veranderen

1ste wet van Newton of traagheidswet:

- Een voorwerp zonder krachten, voert een eenparige beweging uit
met v = constant
- Als de resulterende kracht op een object 0 is, dan blijft een object in
rust
- Als een object een constante snelheid heeft, dan blijft dit bewegen

Mensen op de draaiende schijf zien een ‘kromme baan’ door de Coriolis-
kracht of schijnkracht

F a⃗ : Hoe groter de kracht, hoe groter de versnelling


1
a: Hoe groter de massa, hoe kleiner de versnelling
m

2de wet van Newton of onafhankelijkheidsbeginsel: Σ⃗
F =m⋅ a⃗

m1 ⋅ m2 N ⋅m2
Gravitatiekracht: F G=G ⋅
−11
met G = 6,67 ∙ 10
r2 kg
2



m N
F G=m ⋅ ⃗g
⃗ met g = 9,81 of op aarde
s
2
kg

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Bmw99. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.75. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

80796 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.75  5x  sold
  • (1)
  Add to cart