100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Ejercicios de ecuaciones de series de Fourier de senos y cosenos $9.49   Add to cart

Case

Ejercicios de ecuaciones de series de Fourier de senos y cosenos

 17 views  0 purchase
  • Course
  • Institution

Ejercicios de ecuaciones de series de Fourier de senos y cosenos

Preview 1 out of 4  pages

  • February 16, 2021
  • 4
  • 2020/2021
  • Case
  • Espiritu
  • A+
avatar-seller
Series de Fourier de senos y de cosenos.

Si una función es par o impar, la serie de Fourier se simplifica al hacer las operaciones siguiendo
los conceptos del siguiente teorema.
a) El producto de dos funciones par es par.
b) El producto de dos funciones impar es par.
c) El producto de una función par y una impar es impar.
d) La suma o diferencia de dos funciones par es par.
e) La suma o diferencia de dos funciones impar es impar.
𝑝 𝑝
f) Si 𝑓(𝑥) es par, entonces ∫−𝑝 𝑓(𝑥)𝑑𝑥 = 2 ∫0 𝑓(𝑥)𝑑𝑥
𝑝
g) Si 𝑓(𝑥) es impar, entonces ∫−𝑝 𝑓(𝑥)𝑑𝑥 = 0.



Función par 𝑓(𝑥) = 𝑓(−𝑥) Función impar 𝑓(𝑥) = −𝑓(−𝑥)
𝑓(𝑥) = 𝑥 2 ; 𝑓(−𝑥) = (−𝑥)2 ; 𝑓(−𝑥) = 𝑥 2 𝑓(𝑥) = 𝑥 3 ; 𝑓(−𝑥) = (−𝑥)3 ; 𝑓(−𝑥) = −𝑥 3 ; −𝑓(−𝑥) = 𝑥 3

El eje de simetría "𝑦" El origen (0,0) es el punto de simetría




Función no par, no impar 𝑓(𝑥) ≠ 𝑓(−𝑥)
𝑥+1 −𝑥+1 𝑥−1
𝑓(𝑥) = ; 𝑓(−𝑥) = ; 𝑓(−𝑥) =
𝑥−1 −𝑥−1 𝑥+1




Serie de cosenos
1 𝑝 2 𝑝
𝑎0 = 𝑝 ∫−𝑝 𝑓(𝑥)𝑑𝑥 ; si 𝑓(𝑥) es par entonces 𝑎0 = 𝑝 ∫0 𝑓(𝑥)𝑑𝑥

1 𝑝 𝑛𝜋 2 𝑝 𝑛𝜋
𝑎𝑛 = ∫−𝑝 𝑓(𝑥) cos ( 𝑥) 𝑑𝑥 ; Si 𝑓(𝑥) es par entonces 𝑎𝑛 = ∫0 𝑓(𝑥) cos ( 𝑥) 𝑑𝑥
𝑝 𝑝 𝑝 𝑝

1 𝑝 𝑛𝜋
𝑏𝑛 = ∫−𝑝 𝑓(𝑥) sen ( 𝑥) 𝑑𝑥 Si 𝑓(𝑥) es par entonces 𝑏𝑛 = 0
𝑝 𝑝

Serie de senos
1 𝑝
𝑎0 = ∫−𝑝 𝑓(𝑥)𝑑𝑥 ; si 𝑓(𝑥) es impar entonces 𝑎0 = 0
𝑝

1 𝑝 𝑛𝜋
𝑎𝑛 = ∫−𝑝 𝑓(𝑥) cos ( 𝑥) 𝑑𝑥 ; Si 𝑓(𝑥) es impar entonces 𝑎𝑛 = 0
𝑝 𝑝

1 𝑝 𝑛𝜋 2 𝑝 𝑛𝜋
𝑏𝑛 = ∫−𝑝 𝑓(𝑥) sen ( 𝑥) 𝑑𝑥 Si 𝑓(𝑥) es impar entonces 𝑏𝑛 = ∫−𝑝 𝑓(𝑥) sen ( 𝑥) 𝑑𝑥
𝑝 𝑝 𝑝 𝑝

Ejemplo.

Desarrolle para la función dada, la serie de Fourier adecuada de senos o cosenos.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jocelynmarcial30. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

82871 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.49
  • (0)
  Add to cart