Problemas de aplicación de las ecuaciones diferenciales
Crecimiento y decrecimiento radioactiva.
Problema 49. (Decaimiento radioactivo). Una sustancia radioactiva se desintegra con una rapidez directamente proporcional a la
cantidad presente. Si un cuarto de cantidad presente se ha desintegrado en un periodo de 2000 años. Halle la cantidad de sustancia
radioactiva presente en 100 años.
Solución.
Sea 𝑁 la cantidad de sustancia radioactiva presente en un tiempo 𝑡.
Sea 𝑁0 la cantidad inicial de sustancia radioactiva.
𝑑𝑁 𝑑𝑁
La rapidez de desintegración la representamos por la derivada de la sustancia con respecto al tiempo ∝ −𝑁 ; = −𝑘𝑁; donde 𝑘
𝑑𝑡 𝑑𝑡
𝑑𝑁 𝑑𝑁
es una constante de proporcionalidad y el signo negativo es debido a que se está desintegrando = −𝑘𝑑𝑡; ∫ = −𝑘 ∫ 𝑑𝑡; ln(𝑁) =
𝑁 𝑁
−𝑘𝑡+𝐶 −𝑘𝑡
−𝑘𝑡 + 𝐶; 𝑁 = 𝑒 ; 𝑁 = 𝐶𝑒 .
Condiciones iniciales si 𝑡 = 0; 𝑁 = 𝑁0 sustituyendo 𝑁0 = 𝐶𝑒 −𝑘(0) ; 𝐶 = 𝑁0
𝑁 = 𝑁0 𝑒 −𝑘𝑡 ; para las condiciones de contorno o a la frontera
3
3𝑁0 3𝑁0 3 −ln ( )
𝑡 = 2000 𝑁 = , = 𝑁0 𝑒 −𝑘(2000) ; ln ( ) = ln (𝑒 −𝑘(2000) ) ; 𝑘 = 4
4 4 4 2000
𝑘 = 0.000144 𝑁 = 𝑁0 𝑒 −0.000144𝑡 ; para 𝑡 = 100 años
𝑁 = 0.985703𝑁0 veces la cantidad inicial.
Problema 50. (Crecimiento exponencial). Un cultivo de bacterias aumenta a razón de que es inversamente proporcional a la raíz del
número presente. Si inicialmente hay 300 unidades y después de 5 horas hay 600 unidades ¿en cuanto tiempo habrá 800 unidades.?
Solución:
Sea 𝑁 el número de unidades de bacterias a un tiempo t
Sea 𝑁0 la cantidad inicial de sustancia radioactiva.
𝑑𝑁 1 𝑑𝑁 𝑘
El crecimiento de las bacterias lo representamos por la derivada de la sustancia con respecto al tiempo ∝ ; = ; donde 𝑘 es
𝑑𝑡 𝑁2 𝑑𝑡 𝑁2
𝑁3
una constante de proporcionalidad 𝑁 2 𝑑𝑁 = 𝑘𝑑𝑡; ∫ 𝑁 2 𝑑𝑁 = 𝑘 ∫ 𝑑𝑡; = 𝑘𝑡 + 𝐶;
3
3
𝑁 = √3𝑘𝑡 + 𝐶.
Condiciones iniciales si 𝑡 = 0; 𝑁 = 300 sustituyendo 300 = 3√3𝑘(0) + 𝐶; 𝐶 = 300
3
𝑁 = √3𝑘𝑡 + 300 ; para las condiciones de contorno o a la frontera.
3 3003
𝑡 = 5 ℎ𝑜𝑟𝑎𝑠, 𝑁 = 600, 600 − 300 = √3𝑘𝑡 ; 3003 = 3(5)k ; 𝑘 =
15
3
𝑘 = 1 800 000 𝑁 = √5400000 𝑡 + 300 ; si 𝑁 = 800 unidades
3 5003
800 − 300 = √5 400 000 𝑡 ; 𝑡 = = 23.1418 ℎ𝑜𝑟𝑎𝑠
5400000
Problema 51. (Ley del enfriamiento de Newton) “La velocidad de enfriamiento de un cuerpo es directamente proporcional a la
temperatura del cuerpo menos la temperatura del medio ambiente.”
En un refrigerador que se encuentra a 4 grados centígrados es colocado un objeto cuya temperatura es de 70 grados centígrados la
temperatura del cuerpo baja a 35 grados después de 20 minutos, encuentre su temperatura después de una hora.
Solución:
Sea T la temperatura del cuerpo a un tiempo cualquiera “t”
Sea 𝑇𝐴 la temperatura del ambiente.
La variación de la temperatura con respecto al tiempo la representaremos como
𝑑𝑇 𝑑𝑇 𝑑𝑇
∝ 𝑇 − 𝑇𝐴 ; = 𝑘(𝑇 − 𝑇𝐴 ); separando las variables = 𝑘𝑑𝑡
𝑑𝑡 𝑑𝑡 𝑇−𝑇𝐴
𝑑𝑇
∫ 𝑇−𝑇 = 𝑘 ∫ 𝑑𝑡 + 𝐶; ln(𝑇 − 𝑇𝐴 ) = 𝑘𝑡 + 𝐶 ; 𝑇 − 𝑇𝐴 = 𝑒 𝑘𝑡+𝐶 ; 𝑇 = 𝑇𝐴 + 𝐶𝑒 𝑘𝑡
𝐴
Si 𝑇𝐴 = 4°𝐶 entonces 𝑇 = 4 + 𝐶𝑒 𝑘𝑡
Condiciones iniciales. Si 𝑡 = 0 , 𝑇 = 70°𝐶, si 70 = 4 + 𝐶𝑒 𝑘(0) , 66 = 𝐶
𝑇 = 4 + 66𝑒 𝑘𝑡 ;
Condiciones de contorno 𝑡 = 20 minutos 𝑇 = 35°𝐶
Problema 52. ( Ley del enfriamiento Newton) La ley del enfriamiento de Newton enuncia que: “la variación de la temperatura de un
cuerpo es directamente proporcional a la diferencia de temperatura del cuerpo y la temperatura del medio ambiente”
Resuelva el siguiente problema.
Un termómetro que está en el interior de una habitación se lleva al exterior donde la temperatura del aire es de −10℃ después de un
minuto el termómetro marca 15℃ y a los 4 minutos marca 3℃ . Halle la temperatura inicial de la habitación.
Solución.
Sea T la temperatura del cuerpo a un tiempo cualquiera “t”.
Sea 𝑇𝐴 la temperatura del ambiente.
𝑑𝑇 𝑑𝑇 𝑑𝑇
∝ 𝑇 − 𝑇𝐴 ; = 𝑘(𝑇 − 𝑇𝐴 ); separando las variables = 𝑘𝑑𝑡
𝑑𝑡 𝑑𝑡 𝑇−𝑇𝐴
𝑑𝑇
∫ 𝑇−𝑇 = 𝑘 ∫ 𝑑𝑡 + 𝐶; ln(𝑇 − 𝑇𝐴 ) = 𝑘𝑡 + 𝐶 ; 𝑇 − 𝑇𝐴 = 𝑒 𝑘𝑡+𝐶 ; 𝑇 = 𝑇𝐴 + 𝐶𝑒 𝑘𝑡
𝐴
Caso 1. Si 𝑇𝐴 = −10, 𝑡 = 1 minuto ; 𝑇 = 15℃ sustituyendo
25
15 = −10 + 𝐶𝑒 𝑘 ; 25 = 𝐶𝑒 𝑘 ; =𝐶
𝑒𝑘
Caso 2. Si 𝑇𝐴 = −10, 𝑡 = 4 minutos, 𝑇 = 3℃ sustituyendo
13
3 = −10 + 𝐶𝑒 4𝑘 ; 13 = 𝐶𝑒 4𝑘 ; 4𝑘 = 𝐶 igualando
𝑒
13
25 13 𝑒 4𝑘 13 3𝑘 13 13 ln ( )
= 4𝑘 ; = ;𝑒 = ; ln(𝑒 3𝑘 ) = ln ( ); 𝑘 = 25
; 𝑘 = −0.217975
𝑒𝑘 𝑒 𝑒𝑘 25 25 25 3
25 13
𝐶= = 31.0889 o 𝐶 = = 31.0889
𝑒 −0.217975 𝑒 4(−𝑜.217975)
La temperatura de la habitación es de 31.0889℃
Problema 53. (Mezclas en un tanque, Caso I (entrada=salida ). Un tanque contiene originalmente 100 galones de agua. A un tiempo
cero minutos entra salmuera que contiene 0.15 kilogramos de sal por galón fluye al interior del tanque a una rapidez de 2 galones por
minuto y la mezcla homogénea abandona el tanque con la misma rapidez. Halle la cantidad de sal que hay en el tanque después de 30
minutos.
Solución.
Sea 𝑥 la cantidad de sal que hay en el tanque a un tiempo 𝑡.
𝑑𝑥
La variación de la cantidad de sal en el tanque se representa como y el balance que se hace en el tanque es:
𝑑𝑡
𝑑𝑥
= 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎 𝑑𝑒 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 𝑑𝑒 𝑙𝑎 𝑠𝑎𝑙 - velocidad de salida se la sal
𝑑𝑡
𝑑𝑥 𝑑𝑥 𝑥 𝑑𝑥 𝑥
= 𝑄1 𝜌1 − 𝑄2 𝜌2 ; = 𝑄1 𝜌1 − 𝑄2 ; + 𝑄2 = 𝑄1 𝜌1
𝑑𝑡 𝑑𝑡 𝑉0 +(𝑄1 −𝑄2 )𝑡 𝑑𝑡 𝑉0 +(𝑄1 −𝑄2 )𝑡
Donde 𝑄1 flujo de entrada de la mezcla.
𝜌1 la concentración de entrada de la mezcla.
𝑄2 flujo de salida de la mezcla.
𝜌2 la concentración de salida de la mezcla.
𝑉0 volumen inicial.
𝑑𝑥 𝑥 𝑑𝑥 𝑥 𝑑𝑥 50−𝑥 𝑑𝑥 1
+ 2 = (.5)(2); + = 1; = ;∫ =∫ 𝑑𝑡
𝑑𝑡 100+(2−2)𝑡 𝑑𝑡 50 𝑑𝑡 50 50−𝑥 50
−1 1
1 𝑡+𝐶 − 𝑡
− ln(50 − 𝑥) = 𝑡 + 𝐶 ; 50 − 𝑥 = 𝑒 50 ; 𝑥 = 50 − 𝐶𝑒 50 solución general
50
−1
(0)
Condiciones iniciales Si 𝑡 = 0, 𝑥 = 0, sustituyendo 0 = 50 − 𝐶𝑒 50 ; 𝐶 = 25
−1
𝑡
𝑥 = 50 − 50𝑒 50 ; 𝑥 = 22.5594 libras de sal.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller jocelynmarcial30. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $9.49. You're not tied to anything after your purchase.