100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Ejercicios resueltos del método de Laplace $9.49   Add to cart

Case

Ejercicios resueltos del método de Laplace

 26 views  0 purchase
  • Course
  • Institution

Ejercicios resueltos del método de Laplace

Preview 2 out of 6  pages

  • February 16, 2021
  • 6
  • 2020/2021
  • Case
  • Espiritu
  • A+
avatar-seller
Solución de ecuaciones diferenciales mediante la Transformada de Laplace.

Introducción. La transformada de Laplace se define como ℒ{𝑓(𝑡)} = ∫0 𝑓(𝑡)𝑒 −𝑠𝑡 𝑑𝑡

También se puede representar como ℒ{𝑓(𝑡)} = 𝐹(𝑠) , ℒ{𝑔(𝑡)} = 𝐺(𝑠), o bien ℒ{𝑦(𝑡)} = 𝑌(𝑠).

Mediante unos ejemplos de transformadas de Laplace, mostraré el procedimiento para construir una tabla de
transformadas, la cual será utilizada para resolver ecuaciones diferenciales.

Ejemplo. Encuentre la Transformada de Laplace para la función 𝑓(𝑡) = 1.

∞ 1 ∞ 1 1 1 1 1 1
Solución. ℒ{𝑓(𝑡)} = ∫0 (1)𝑒 −𝑠𝑡 𝑑𝑡 = − 𝑠 ∫0 −𝑠𝑒 −𝑠𝑡 𝑑𝑡 = − 𝑠 [𝑒 −𝑠𝑡 ]∞
0 = − 𝑠 [𝑒 ∞ − 𝑒 0 ] = − 𝑠 [−1] = 𝑠


Ejemplo. Encuentre la transformada de Laplace para la función 𝑓(𝑡) = 𝑡.

∞ −1 −𝑠𝑡
Solución. ℒ{𝑓(𝑡)} = ∫0 (𝑡)𝑒 −𝑠𝑡 𝑑𝑡 ; resolviendo por partes 𝑢 = 𝑡, 𝑑𝑢 = 𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

𝑡 −1 −𝑠𝑡 ∞ 𝑡 1 ∞
ℒ{𝑓(𝑡)} = [− 𝑒 −𝑠𝑡 − ∫ 𝑒 𝑑𝑡] ; ℒ{𝑓(𝑡)} = [− 𝑒 −𝑠𝑡 − 2 ∫ −𝑠 𝑒 −𝑠𝑡 𝑑𝑡]
𝑠 𝑠 0 𝑠 𝑠 0

𝑡 ∞ 1 𝑡 ∞ 1 1 ∞
ℒ{𝑓(𝑡)} = − [ ] − [∫ −𝑠 𝑒 −𝑠𝑡 𝑑𝑡]∞
0 ; ℒ{𝑓(𝑡)} = − [ ] − [ ]
𝑠𝑒 𝑠𝑡 0 𝑠2 𝑠𝑒 𝑠𝑡 0 𝑠2 𝑒 𝑠𝑡 0

𝑡 1 𝑡 1 1
lim 𝑠𝑒 𝑠𝑡 = lim 𝑠2 𝑒 𝑠𝑡 = 0 ; lim 𝑠𝑒 𝑠𝑡 = 0 ; ℒ{𝑓(𝑡)} = 0 − 𝑠2 [0 − 1] = 𝑠2
𝑡→∞ 𝑡→∞ 𝑡→0

Ejemplo. Encuentre la Transformada de Laplace para la siguiente función. 𝑓(𝑡) = 𝑒 𝑎𝑡
∞ ∞ ∞
Solución. ℒ{𝑒 𝑡 } = ∫0 (𝑒 𝑎𝑡 )𝑒 −𝑠𝑡 𝑑𝑡 ; ℒ{𝑒 𝑡 } = ∫0 (𝑒 𝑎𝑡−𝑠𝑡 )𝑑𝑡; ℒ{𝑒 𝑡 } = ∫0 𝑒 −(𝑠−𝑎)𝑡 𝑑𝑡

∞ ∞
∞ 1 𝑒 −(𝑠−𝑎)𝑡
ℒ{𝑒 𝑡 } = [∫ 𝑒 −(𝑠−𝑎)𝑡 𝑑𝑡]0 ; ℒ{𝑒 𝑡 } = [−(𝑠−𝑎) ∫ −(𝑠 − 𝑎)𝑒 −(𝑠−𝑎)𝑡 𝑑𝑡] ; ℒ{𝑒 𝑡 } = [ −(𝑠−𝑎) ]
0 0

−1 1 ∞ −1 1 1 −1 1
ℒ{𝑒 𝑡 } = (𝑠−𝑎) [𝑒 (𝑠−𝑎)𝑡 ] ; ℒ{𝑒 𝑡 } = (𝑠−𝑎) [𝑒 (𝑠−𝑎)∞ − 𝑒 (𝑠−𝑎)(0)]; ℒ{𝑒 𝑡 } = (𝑠−𝑎) [0 − 1] ; ℒ{𝑒 𝑡 } = (𝑠−𝑎)
0

Ejemplo. Encuentre la Transformada de Laplace para la siguiente función. 𝑓(𝑡) = 𝑠𝑒𝑛(𝑎𝑡)

Solución. ℒ{𝑠𝑒𝑛(𝑎𝑡)} = ∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 ;

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑠𝑒𝑛(𝑎𝑡), 𝑑𝑢 = acos (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑒
𝑠

∞ −1 −1 −𝑠𝑡 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡) − ∫ 𝑎cos(𝑎𝑡) 𝑠
𝑒 𝑑𝑡]
0

∞ −1 𝑎 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡) + 𝑠 ∫ cos(𝑎𝑡)𝑒 −𝑠𝑡 𝑑𝑡]
0

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑐𝑜𝑠(𝑎𝑡), 𝑑𝑢 = −𝑎sen (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

∞ −1 𝑎 −1 −1 −𝑠𝑡 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡) + 𝑠 ( 𝑠 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡 − ∫ 𝑠
𝑒 (−𝑎 sen(𝑎𝑡) 𝑑𝑡)]
0

, ∞ −1 ∞ 𝑎 ∞ 𝑎2 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡] − 𝑠2 ∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡
0 0

𝑎2 ∞ ∞ −1 ∞ 𝑎 ∞
∫ sen(𝑎𝑡) 𝑒 −𝑠𝑡
𝑠2 0
+ ∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡]
0 0

𝑎2 ∞ −1 ∞ 𝑎 ∞
[ 𝑠2 + 1] ∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡]
0 0

∞ 𝑠2 −1 ∞ 𝑎 ∞
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡]
0 0

∞ −𝑠 𝑠𝑒𝑛(𝑎𝑡) ∞ 𝑎 𝑐𝑜𝑠(𝑎𝑡) ∞
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠𝑡
] − 𝑠2 +𝑎2 [ 𝑒 𝑠𝑡
]
0 0

∞ −𝑠 𝑠𝑒𝑛(𝑎(∞)) 𝑠𝑒𝑛(0𝑎) ∞ 𝑎 𝑐𝑜𝑠(𝑎(∞) 𝑐𝑜𝑠(0) ∞
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠∞ − 𝑒0
] − 𝑠2 +𝑎2 [ 𝑒 𝑠(∞)
− ]
𝑒 𝑠(0) 0
0

∞ −𝑠 𝑎 𝑎
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [0 − 0] − 𝑠2 +𝑎2 [0 − 1] = 𝑠2 +𝑎2

Ejemplo. Encuentre la Transformada de Laplace para la siguiente función. 𝑓(𝑡) = 𝑐𝑜𝑠(𝑎𝑡)

Solución. ℒ{𝑐𝑜𝑠(𝑎𝑡)} = ∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 ;

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑐𝑜𝑠(𝑎𝑡), 𝑑𝑢 = −𝑎sen (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

∞ −1 −1 −𝑠𝑡 ∞
∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑐𝑜𝑠(𝑎𝑡) − ∫ 𝑎sen(𝑎𝑡) 𝑠
𝑒 𝑑𝑡]
0

∞ −1 ∞ 𝑎
∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑐𝑜𝑠(𝑎𝑡)] + 𝑠 [∫ sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡]∞
0
0

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑠𝑒𝑛(𝑎𝑡), 𝑑𝑢 = 𝑎cos (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

∞ −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞ 𝑎2 ∞
∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠𝑒 𝑠𝑡
] − 𝑠2 [ 𝑒 𝑠𝑡
] − 𝑠2 ∫0 cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡
0 0

𝑎2 ∞ ∞ −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞
∫ cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡 + ∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ ] − [ 𝑒 𝑠𝑡 ]
𝑠2 0 𝑠𝑒 𝑠𝑡 0 𝑠2 0

𝑎2 ∞ −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞
[ 𝑠2 + 1] ∫0 cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠𝑒 𝑠𝑡
] − 𝑠2 [ 𝑒 𝑠𝑡
]
0 0

∞ 𝑠 −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞
∫0 cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠𝑡
] −
𝑠2 +𝑎2
[ 𝑒 𝑠𝑡
]
0 0

∞ −𝑠 𝑐𝑜𝑠(𝑎(∞)) 𝑐𝑜𝑠(0) ∞ 𝑎 𝑠𝑒𝑛(𝑎(∞) 𝑠𝑒𝑛(0) ∞
∫0 cos(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠∞ − 𝑒0 0
] − 𝑠2 +𝑎2 [ 𝑒 𝑠(∞) − ]
𝑒 𝑠(0) 0

∞ −𝑠 𝑎 𝑠
∫0 cos(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [0 − 1] − 𝑠2 +𝑎2 [0 − 0] = 𝑠2 +𝑎2

La transformada inversa de la place si ℒ{𝑓(𝑡)} = 𝐹(𝑠) , entonces 𝑓(𝑡) = ℒ −1 {𝐹(𝑠)}

1 1 1
Así ℒ −1 {𝑠 } = 1 , ℒ −1 {𝑠2 } = 𝑡 , ℒ −1 {𝑠−𝑎} = 𝑒 𝑎𝑡 , etc

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jocelynmarcial30. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

77254 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.49
  • (0)
  Add to cart