Método de solución de ecuaciones diferenciales lineales.
La forma característica de una ecuación lineal es de la forma
𝑑𝑦
+ 𝑝(𝑥)𝑦 = 𝑄(𝑥)
𝑑𝑥
Parar resolver esta ecuación diferencial desarrollaremos una solución la cual proviene como un caso particular
las ecuaciones diferenciales reducibles a exacta.
𝑑𝑦
𝑑𝑥[ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)] ; 𝑑𝑦 + 𝑃(𝑥)𝑦𝑑𝑥 = 𝑄(𝑥)𝑑𝑥;
𝑑𝑥
(𝑃(𝑥)𝑦 − 𝑄(𝑥))𝑑𝑥 + 𝑑𝑦 = 0; donde 𝑀 = 𝑃(𝑥)𝑦 − 𝑄(𝑥) y 𝑁 = 1
𝜕𝑁 𝜕𝑀
𝜕𝑀 𝜕𝑁 𝜕𝑁 𝜕𝑀 ( − ) −𝑃(𝑥)
𝜕𝑥 𝜕𝑦
= 𝑃(𝑥) ; =0 − = 0 − 𝑃(𝑥); = = 𝑃(𝑥)
𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 −𝑁 −1
∫ 𝑃(𝑥)𝑑𝑥
𝑤(𝑥) = 𝑒 , así podemos multiplicar por el factor integrante la ecuación diferencial inicial.
𝑒 ∫ 𝑃(𝑥)𝑑𝑥 𝑑𝑦 + 𝑦𝑃(𝑥) 𝑒 ∫ 𝑃(𝑥)𝑑𝑥 𝑑𝑥 = 𝑒 ∫ 𝑃(𝑥)𝑑𝑥 𝑄(𝑥)𝑑𝑥 aplicando el operador de integración en ambos lados
de la igualdad, nos permite tener una fórmula
Para obtener la solución de la ecuación diferencial lineal.
∫ 𝑒 ∫ 𝑃(𝑥)𝑑𝑥 𝑄(𝑥)𝑑𝑥+𝐶
∫(𝑦𝑒 ∫ 𝑃(𝑥)𝑑𝑥 )′ = ∫ 𝑒 ∫ 𝑃(𝑥)𝑑𝑥 𝑄(𝑥)𝑑𝑥 + 𝐶; 𝑦=
𝑒 ∫ 𝑃(𝑥)𝑑𝑥
Ejemplo 38. Resuelva la siguiente ecuación diferencial lineal .
(5 cos (𝑥) − 𝑠𝑒𝑛(𝑥))𝑑𝑥 + 𝑠𝑒𝑛(𝑥)𝑑𝑦 = 0
Solución.
La siguiente ecuación lo resolveremos utilizando la forma característica y la fórmula.
𝑑𝑦 −5 ycos (𝑥)+𝑠𝑒𝑛(𝑥)
𝑠𝑒𝑛(𝑥)𝑑𝑦 = − (5𝑦 cos (𝑥) − 𝑠𝑒𝑛(𝑥))𝑑𝑥; = ;
𝑑𝑥 𝑠𝑒𝑛(𝑥)
𝑑𝑦
+ 5cot (𝑥)𝑦 = 1 forma característica
𝑑𝑥
Problema 42. Resuelva la ecuación diferencial lineal.
𝑑𝑦 1
=
𝑑𝑥 𝑥𝑠𝑒𝑛(𝑦)+2𝑠𝑒𝑛(2𝑦)
Solución.
𝑑𝑥 𝑑𝑥
= 𝑥𝑠𝑒𝑛(𝑦) + 2𝑠𝑒𝑛(2𝑦); − 𝑠𝑒𝑛(𝑦)𝑥 = 2𝑠𝑒𝑛(2𝑦);
𝑑𝑦 𝑑𝑦
si 𝑤(𝑦) = 𝑒 ∫ 𝑃(𝑦)𝑑𝑦 donde para nuestro ejemplo 𝑃(𝑦) = −𝑠𝑒𝑛(𝑦) entonces:
𝑑𝑥
𝑤(𝑦) = 𝑒 ∫ −𝑠𝑒𝑛(𝑦)𝑑𝑦 = 𝑒 cos (𝑦) ; 𝑒 cos (𝑦) 𝑑𝑦[ − 𝑠𝑒𝑛(𝑦)𝑥 = 2𝑠𝑒𝑛(2𝑦)];
𝑑𝑦
𝑒 cos (𝑦) 𝑑𝑥 − 𝑥𝑠𝑒𝑛(𝑦)𝑒 cos(𝑦) 𝑑𝑦 = 2𝑠𝑒𝑛(2𝑦)𝑒 cos (𝑦)
𝑑𝑦
cos(𝑦) ′ cos (𝑦) ∫ 2𝑠𝑒𝑛(2𝑦)𝑒 cos (𝑦) 𝑑𝑦+𝐶
∫(𝑥𝑒 ) = ∫ 2𝑠𝑒𝑛(2𝑦)𝑒 𝑑𝑦 + 𝐶; 𝑥 =
𝑒 cos (𝑦)
cos (𝑦)
∫ 4𝑠𝑒𝑛(𝑦)cos (𝑦)𝑒 𝑑𝑦 + 𝐶 si 𝑢 = 4 cos(𝑦) ; 𝑑𝑢 = −4sen (𝑦)
𝑑𝑣 = 𝑠𝑒𝑛(𝑦)𝑒 cos (𝑦) ; 𝑣 = 𝑒 cos (𝑦)
4 cos(𝑦)𝑒 cos (𝑦) −4 ∫ −𝑠𝑒𝑛(𝑦)𝑒 cos(𝑦) 𝑑𝑦+𝐶 4 cos(𝑦)𝑒 cos (𝑦) −4𝑒 cos (𝑦) +𝐶
𝑥= ; 𝑥=
𝑒 cos (𝑦) 𝑒 cos (𝑦)
𝑥 = 4 cos(𝑦) − 4 + 𝐶𝑒 −cos (𝑦)
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller jocelynmarcial30. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $9.49. You're not tied to anything after your purchase.