100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
1CM120 - Formula sheet $5.89
Add to cart

Other

1CM120 - Formula sheet

 39 views  4 purchases
  • Course
  • Institution
  • Book

Formula sheet for use during the exam

Preview 1 out of 4  pages

  • February 18, 2021
  • 4
  • 2020/2021
  • Other
  • Unknown
avatar-seller
LR Module SPIM Module SPIM – Greedy Heuristic
Problem (P) 𝐼𝐼: set of SKUs The Greedy Heuristic is about finding a
min[𝐶𝐶(𝑆𝑆)] 𝑁𝑁: set of machine types feasible solution in the cheapest possible way.
Subject to 𝑚𝑚𝑖𝑖,𝑛𝑛 (≥ 0): Demand rate for SKU 𝑖𝑖 by machine type 𝑛𝑛 Minimum basestock levels already found for
𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) ≤ 𝐸𝐸𝐸𝐸𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜 𝑀𝑀𝑛𝑛 = ∑𝑖𝑖∈𝐼𝐼 𝑚𝑚𝑖𝑖,𝑛𝑛 : total demand rate of machine type 𝑛𝑛 enumeration procedure. Make a table for:
𝑆𝑆𝑖𝑖 ∈ {0,1, … }, ∀𝑖𝑖 ∈ 𝐼𝐼 𝜇𝜇𝑖𝑖 = ∑𝑛𝑛∈𝑁𝑁 𝑚𝑚𝑖𝑖,𝑛𝑛 : Total demand rate for SKU 𝑖𝑖 iteration, gammas, k, basestock levels,
𝑡𝑡𝑖𝑖 (> 0): Mean replenishment lead time for SKU 𝑖𝑖 aggregate mean waiting times, and total cost.

𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) = � 𝐸𝐸𝐸𝐸𝑂𝑂𝑖𝑖 (𝑆𝑆𝑖𝑖 ) 𝑡𝑡𝑖𝑖𝑒𝑒𝑒𝑒 (0 ≤ 𝑡𝑡𝑖𝑖𝑒𝑒𝑒𝑒 ≤ 𝑡𝑡𝑖𝑖 ): Mean time for an emergency Δ𝑖𝑖 𝑑𝑑(𝑆𝑆)
Γ𝑖𝑖 = −
𝑖𝑖∈𝐼𝐼 shipment for SKU 𝑖𝑖 Δ𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 )
𝐶𝐶(𝑆𝑆) = � 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ) = � 𝑐𝑐𝑖𝑖𝑎𝑎 𝑆𝑆𝑖𝑖 𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒 (≥ 0): corresponding cost for an emergency Δ𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ) = 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 + 1) − 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 )
𝑖𝑖∈𝐼𝐼 𝑖𝑖∈𝐼𝐼 shipment Δ𝑖𝑖 𝑑𝑑(𝑆𝑆) = 𝑑𝑑(𝑆𝑆 + 𝑒𝑒𝑖𝑖 ) − 𝑑𝑑(𝑆𝑆)
𝑐𝑐𝑖𝑖ℎ (> 0): Inventory holding cost per time unit per part +
�𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �
�𝑛𝑛 (𝑆𝑆 + 𝑒𝑒𝑖𝑖 ) − 𝑊𝑊
Δ𝑖𝑖 𝑑𝑑(𝑆𝑆) = � ��𝑊𝑊
General Optimization Problem of SKU 𝑖𝑖
𝑛𝑛∈𝒩𝒩
min 𝑓𝑓(𝑥𝑥) , 𝑥𝑥 ∈ 𝒳𝒳 𝑜𝑜𝑜𝑜𝑜𝑜 +
Subject to �𝑛𝑛 (𝑆𝑆) − 𝑊𝑊
− �𝑊𝑊 �𝑛𝑛 � �
�𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 (> 0): Target level for the aggregate mean waiting
𝑊𝑊
𝑔𝑔𝑗𝑗 (𝑥𝑥) ≤ 𝑏𝑏𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑚𝑚 time for machine type 𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜 +
�𝑛𝑛 (𝑆𝑆) − 𝑊𝑊
Here, 𝑑𝑑(𝑆𝑆) = ∑𝑛𝑛∈𝑁𝑁 �𝑊𝑊 �𝑛𝑛 �
𝑆𝑆 = {𝑥𝑥: 𝑥𝑥 ∈ 𝒳𝒳, 𝑔𝑔𝑗𝑗 (𝑥𝑥) ≤ 𝑏𝑏𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑚𝑚} is called the
feasible region Decision variables Increase the basestock level for the largest Γ𝑖𝑖 .
𝑆𝑆𝑖𝑖 : Basestock level for SKU 𝑖𝑖, (𝑆𝑆𝑖𝑖 ∈ {0,1, … }), and 𝑆𝑆 =
Lagrange function (𝑆𝑆1 , 𝑆𝑆2 , . . , 𝑆𝑆|𝐼𝐼| ) SPIM – Dantzig-Wolfe Decomposition
𝑚𝑚
To get a lower bound for optimal costs and a
𝐿𝐿(𝑥𝑥, 𝜆𝜆) = 𝑓𝑓(𝑥𝑥) + ��𝑔𝑔𝑗𝑗 (𝑥𝑥) − 𝑏𝑏𝑗𝑗 � ∗ 𝜆𝜆𝑗𝑗 Output variables heuristic solution.
𝑗𝑗=1 1 𝑆𝑆
𝛽𝛽𝑖𝑖 (𝑆𝑆𝑖𝑖 ): Fill rate for SKU 𝑖𝑖. 𝛽𝛽𝑖𝑖 (𝑆𝑆𝑖𝑖 ) = 1 − ( ∗ 𝜌𝜌𝑖𝑖 𝑖𝑖 )/ 𝐾𝐾 ≔ {0,1,2 … }: Set of basestock policies for
𝑆𝑆𝑖𝑖 !
1
Lagrange Dual function:
𝑆𝑆
(∑𝑗𝑗=0
𝑖𝑖 𝑗𝑗
∗ 𝜌𝜌𝑖𝑖 ). Here, 𝜌𝜌𝑖𝑖 = 𝜇𝜇𝑖𝑖 𝑡𝑡𝑖𝑖 . Aggregate fill rate: each SKU 𝑖𝑖 ∈ 𝐼𝐼
𝑗𝑗!
𝐻𝐻(𝜆𝜆) = min[𝐿𝐿(𝑥𝑥, 𝜆𝜆)] 𝑚𝑚 𝑆𝑆𝑖𝑖𝑘𝑘 : Basestock level of policy 𝑘𝑘 for SKU 𝑖𝑖 (one
𝛽𝛽(𝑆𝑆) = ∑𝑖𝑖∈𝐼𝐼 � 𝑖𝑖� ∗ 𝛽𝛽𝑖𝑖 (𝑆𝑆𝑖𝑖 )
𝑀𝑀
can take 𝑆𝑆𝑖𝑖𝑘𝑘 = 𝑘𝑘)
Weak Duality 𝑥𝑥𝑖𝑖𝑘𝑘 ∈ {0,1}: Variable which indicates whether
Let 𝑥𝑥 ∗ be the optimal value of the optimization problem. 𝑊𝑊𝑖𝑖 (𝑆𝑆𝑖𝑖 ): Mean waiting time for demands for SKU 𝑖𝑖.
𝑊𝑊𝑖𝑖 (𝑆𝑆𝑖𝑖 ) = �1 − 𝛽𝛽𝑖𝑖 (𝑆𝑆𝑖𝑖 )� ∗ 𝑡𝑡𝑖𝑖𝑒𝑒𝑒𝑒 policy 𝑘𝑘 is chosen for SKU 𝑖𝑖 (𝑥𝑥𝑖𝑖𝑘𝑘 = 1) or not
Then, for 𝜆𝜆 ≥ 0, we have 𝑓𝑓(𝑥𝑥 ∗ ) ≥ 𝐻𝐻(𝜆𝜆)
(𝑥𝑥𝑖𝑖𝑘𝑘 = 0).

Strong Duality �𝑛𝑛 (𝑆𝑆): Aggregate mean waiting time for demands by
𝑊𝑊
If for a feasible solution 𝑥𝑥 and 𝜆𝜆 ≥ 0, 𝑓𝑓(𝑥𝑥) = 𝐻𝐻(𝜆𝜆), then �𝑛𝑛 (𝑆𝑆) = ∑𝑖𝑖∈𝐼𝐼 �𝑚𝑚𝑖𝑖,𝑛𝑛 � ∗ 𝑊𝑊𝑖𝑖 (𝑆𝑆𝑖𝑖 )
machine type 𝑛𝑛. 𝑊𝑊 Multi-location System with Lateral
𝑀𝑀𝑛𝑛
𝑥𝑥 is an optimal solution Transshipments
Output variables:
𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ): Expected total cost per time unit for SKU 𝑖𝑖.
Everett Result – The Everett results provides us with a 𝛽𝛽𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ): Fraction satisfied by LW 𝑗𝑗 itself
set of given conditions under which strong duality holds. 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ) ≔ 𝑐𝑐𝑖𝑖ℎ ∗ 𝑆𝑆𝑖𝑖 + 𝜇𝜇𝑖𝑖 �1 − 𝛽𝛽𝑖𝑖 (𝑆𝑆𝑖𝑖 )� ∗ 𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒
If for a given 𝜆𝜆 ≥ 0, 𝑆𝑆(𝜆𝜆) minimizes 𝐿𝐿(𝑆𝑆, 𝜆𝜆), then 𝑆𝑆(𝜆𝜆) is 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑘𝑘 (𝑆𝑆𝑖𝑖 ): Fraction of demand for SKU 𝑖𝑖 at LW
the optimal solution for Problem P. This means we have 𝐶𝐶(𝑆𝑆) = ∑𝑖𝑖∈𝐼𝐼 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ): Total average costs 𝑗𝑗 that is delivered from main LW 𝑘𝑘 via a lateral
the following: (1) 𝐸𝐸𝐸𝐸𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆(𝜆𝜆)), and (2) transshipment.
𝜆𝜆�𝐸𝐸𝐸𝐸𝐸𝐸�𝑆𝑆(𝜆𝜆)� − 𝐸𝐸𝐸𝐸𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜 � = 0 Optimization Problem 𝐴𝐴𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ): Total fraction satisfied by a lateral
min[𝐶𝐶(𝑆𝑆)] transshipment, 𝐴𝐴𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ) = ∑𝑘𝑘∈𝐾𝐾\{𝑗𝑗} 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑘𝑘 (𝑆𝑆𝑖𝑖 )
Poisson probability �𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑛𝑛 ∈ ℕ
�𝑛𝑛 (𝑆𝑆) ≤ 𝑊𝑊
Subject to 𝑊𝑊 𝜃𝜃𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ): Fraction satisfied by an emergency
�𝜆𝜆𝑥𝑥 ∗ 𝑒𝑒 −𝜆𝜆 �
ℙ{𝑋𝑋 = 𝑥𝑥} = 𝑆𝑆𝑖𝑖 ∈ {0,1, … } for all 𝑖𝑖 ∈ 𝐼𝐼 shipment
𝑥𝑥!
𝐶𝐶𝑃𝑃 : Optimal costs of problem P
𝛽𝛽𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ) + 𝐴𝐴𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ) + 𝜃𝜃𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ) = 1
Basic Multi-Item, Single-Location Inventory
SPIM – Enumeration Formulas:
Model – Total investment
Lower bound for optimal basestock levels: 𝑊𝑊𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ): Mean waiting time for demands for
𝐶𝐶(𝑆𝑆) = � 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ) = � 𝑐𝑐𝑖𝑖𝑎𝑎 ∗ 𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖,𝑙𝑙𝑙𝑙 ≔ min[𝑆𝑆𝑖𝑖 ∈ ℕ0 |∆𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ) > 0] , 𝑖𝑖 ∈ 𝐼𝐼 SKU 𝑖𝑖 at LW 𝑗𝑗
𝑖𝑖∈𝐼𝐼 𝑖𝑖∈𝐼𝐼
Aggregate mean number of backorders in steady-state Lower bound for 𝑪𝑪𝑷𝑷 : 𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 ≔ ∑𝑖𝑖∈𝐼𝐼 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖,𝑙𝑙𝑙𝑙 ) 𝑊𝑊𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 ) = 𝑙𝑙𝑙𝑙𝑙𝑙
� 𝑡𝑡𝑗𝑗,𝑘𝑘 ∗ 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑘𝑘 (𝑆𝑆𝑖𝑖 ) + 𝑡𝑡𝑗𝑗𝑒𝑒𝑒𝑒
𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) = � 𝐸𝐸𝐸𝐸𝑂𝑂𝑖𝑖 (𝑆𝑆𝑖𝑖 ) Feasible solution 𝑘𝑘∈𝐾𝐾,𝑘𝑘≠𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜
�𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 �
𝑖𝑖∈𝐼𝐼 𝑊𝑊 ≔ 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛∈ℕ �𝑊𝑊 ∗ 𝜃𝜃𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 )
Backorder position 𝑜𝑜𝑜𝑜𝑜𝑜
�𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑆𝑆𝑖𝑖 = min�𝑥𝑥 ≥ 𝑆𝑆𝑖𝑖.𝑙𝑙𝑙𝑙 �𝑊𝑊𝑖𝑖 (𝑥𝑥) ≤ 𝑊𝑊 �𝑛𝑛 (𝑆𝑆): Aggregate mean waiting time for group
𝑆𝑆𝑖𝑖 𝑊𝑊
𝑢𝑢𝑢𝑢
Upper bound for 𝑪𝑪𝑷𝑷 : 𝐶𝐶𝑃𝑃 = 𝐶𝐶(𝑆𝑆) 𝑛𝑛 ∈ 𝑁𝑁𝑗𝑗 , 𝑗𝑗 ∈ 𝐽𝐽
𝐸𝐸𝐸𝐸𝑂𝑂𝑖𝑖 (𝑆𝑆𝑖𝑖 ) = 𝑚𝑚𝑖𝑖 𝑡𝑡𝑖𝑖 − 𝑆𝑆𝑖𝑖 + �(𝑆𝑆𝑖𝑖 − 𝑥𝑥) ∗ ℙ{𝑋𝑋𝑖𝑖 = 𝑥𝑥}
𝒖𝒖𝒖𝒖
𝑪𝑪𝑷𝑷 − 𝑪𝑪𝒍𝒍𝒍𝒍 𝑚𝑚
𝑥𝑥=0 𝑷𝑷 : Amount that you use to make extra costs for �𝑛𝑛 (𝑆𝑆) = � 𝑖𝑖,𝑛𝑛 ∗ 𝑊𝑊𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 )
𝑊𝑊
SKUs compared to the costs under solution 𝑀𝑀𝑛𝑛
𝑖𝑖∈𝐼𝐼
�𝑆𝑆1,𝑙𝑙𝑙𝑙 , 𝑆𝑆2,𝑙𝑙𝑙𝑙 , 𝑆𝑆3,𝑙𝑙𝑙𝑙 �.
Lagrange Relaxation 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ): Expected total cost per time unit for
Upper bound for optimal basestock levels: SKU 𝑖𝑖
𝐿𝐿(𝑆𝑆, 𝜆𝜆) = � 𝐿𝐿𝑖𝑖 (𝑆𝑆𝑖𝑖 , 𝜆𝜆) − 𝜆𝜆 ∗ 𝐸𝐸𝐸𝐸𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑖𝑖,𝑢𝑢𝑢𝑢
𝑖𝑖∈𝐼𝐼 𝑢𝑢𝑢𝑢
where ≔ max�𝑥𝑥 ≥ 𝑆𝑆𝑖𝑖,𝑙𝑙𝑙𝑙 �𝐶𝐶𝑖𝑖 (𝑥𝑥) − 𝐶𝐶𝑖𝑖 �𝑆𝑆𝑖𝑖,𝑙𝑙𝑙𝑙 � ≤ 𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑃𝑃𝑙𝑙𝑙𝑙 � , 𝑖𝑖 ∈ 𝐼𝐼
= � 𝑐𝑐𝑖𝑖ℎ ∗ 𝑆𝑆𝑖𝑖,𝑗𝑗 + � 𝑀𝑀𝑖𝑖,𝑗𝑗 � � 𝑐𝑐𝑗𝑗,𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙

𝐿𝐿𝑖𝑖 (𝑆𝑆𝑖𝑖 , 𝜆𝜆) ≔ 𝑐𝑐𝑖𝑖𝑎𝑎 𝑆𝑆𝑖𝑖 + 𝜆𝜆 ∗ 𝐸𝐸𝐸𝐸𝑂𝑂𝑖𝑖 (𝑆𝑆𝑖𝑖 ) Search for the best solution among all solutions 𝑆𝑆 with 𝑗𝑗∈𝐽𝐽 𝑗𝑗∈𝐽𝐽 𝑘𝑘∈𝐾𝐾,𝑘𝑘≠𝑗𝑗
𝑆𝑆𝑖𝑖,𝑙𝑙𝑙𝑙 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖,𝑢𝑢𝑢𝑢 for all 𝑖𝑖 ∈ 𝐼𝐼. This gives an optimal ∗ 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑘𝑘 (𝑆𝑆𝑖𝑖 ) + 𝑐𝑐𝑗𝑗𝑒𝑒𝑒𝑒
solution 𝑆𝑆 ∗ and the optimal costs 𝐶𝐶𝑃𝑃 = 𝐶𝐶(𝑆𝑆 ∗ ).
Smallest stock level
∗ 𝜃𝜃𝑖𝑖,𝑗𝑗 (𝑆𝑆𝑖𝑖 )�
Smallest stock level for where Δ𝐿𝐿𝑖𝑖 (𝜆𝜆, 𝑆𝑆𝑖𝑖 ) > 0 is the
optimal solution. Smallest stock level where ℙ{𝑋𝑋𝑖𝑖 ≤
𝑆𝑆𝑖𝑖 } = (𝜆𝜆 − 𝑐𝑐𝑖𝑖𝑎𝑎 )/𝜆𝜆 is the optimal solution 𝐶𝐶(𝑆𝑆) = ∑𝑖𝑖∈𝐼𝐼 𝐶𝐶𝑖𝑖 (𝑆𝑆𝑖𝑖 ): Total average costs




1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller remcodewit. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.89. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

50064 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.89  4x  sold
  • (0)
Add to cart
Added