100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary BMS44 Mitochondrial Disease Drug Development (BMS44 Radboud University) $4.34   Add to cart

Summary

Summary BMS44 Mitochondrial Disease Drug Development (BMS44 Radboud University)

 19 views  0 purchase
  • Course
  • Institution

This summary includes extensive notes and important figures of all 12 lectures of the course given in 2021

Preview 3 out of 30  pages

  • February 24, 2021
  • 30
  • 2020/2021
  • Summary
avatar-seller
BMS44 Mitochondrial disease drug development
Radboud university, Biomedical sciences master’s course 2021




Syllabus by Jessie Hendricks




Pagina | 1

,Inhoud
Course content and learning goals ......................................................................................................... 3
The structure and function of the OXPHOS system .............................................................................. 4
LE1 Introductory Lecture .................................................................................................................... 4
LE2 The structure and function of the mitochondrial OXPHOS system ............................................ 5
LE3 Introduction proteomics and complexomics .............................................................................. 6
PR1 Practicum ..................................................................................................................................... 7
Cell biological and clinical consequences of mitochondrial defects ..................................................... 7
LE 4 Morphofunction .......................................................................................................................... 7
LE5 Clinical aspects ............................................................................................................................. 8
LE6 Biochemical analysis in OXPHOS disorders ............................................................................... 11
The mitochondrial genome and proteome with special reference to the OXPHOS system .............. 13
LE7 Establishing the mitochondrial proteome................................................................................. 13
PR2 Practicum ................................................................................................................................... 15
LE8 Mitochondrial genome .............................................................................................................. 15
WG1 Critical reading + preparation presentation ........................................................................... 18
IL1 Presentation 1 ............................................................................................................................. 18
Drug development for mitochondrial diseases ................................................................................... 19
LE9 Drug development; general and mitochondrial targets ........................................................... 19
LE10 C. Elegans as an innovative model to probe mitochondrial function .................................... 23
LE11 Instruction WG2 Drug target profile........................................................................................ 26
WG2 Drug profile .............................................................................................................................. 27
LE12 Clinical traits ............................................................................................................................. 27
IL2 Presentation 2 ............................................................................................................................. 30
Final week ............................................................................................................................................. 30
IL3 Question hour ............................................................................................................................. 30
Exam .................................................................................................................................................. 30




Pagina | 2

, Course content and learning goals
Most of the cells' energy comes in the form of ATP, which, under conditions of high energy demand, is
primarily produced by mitochondrial oxidative phosphorylation (OXPHOS). To adequately respond to
changes in cellular ATP demand, the OXPHOS system maintains a stable, inwardly-directed
electrochemical H+ gradient across the inner mitochondrial membrane, the potential energy of which
is used to drive ATP synthesis. The OXPHOS system is composed of 5 multi-protein enzyme complexes
which are built from more than 80 different proteins with the aid of multiple complex-specific
assembly factors. Defects in genes that encode these structural proteins and assembly factors give rise
to a plethora of OXPHOS dysfunction disorders for which currently no cure exists. However,
dysfunction of the OXPHOS system is not only observed in many inborn errors of metabolism but is
also associated with more common pathologic conditions, such as Alzheimer’s disease, Parkinson’s
disease, cancer, cardiac disease, diabetes, epilepsy, Huntington’s disease, and obesity. Moreover, a
progressive decline in the expression of mitochondrial genes is a central feature of normal human
aging. The term “mitochondrial medicine” refers to approaches that have been developed to manage
mitochondrial dysfunction and, directly or indirectly, its consequences. In the past decade, the analysis
of monogenic mitochondrial diseases has considerably advanced our understanding of the cell
biological consequences of mitochondrial dysfunction. In this module we will learn how this
understanding contributes to the rational design of intervention strategies for mitochondrial
dysfunction.

After completion of the course, students are able to
1. Apply basic bioinformatics techniques to obtain a better understanding of the mitochondrial
OXPHOS process at a molecular level.
2. Identify a disease-causing molecular defect from complexome profiling data.
3. Critically evaluate a scientific publication on mitochondrial DNA.
4. Apply acquired knowledge about drug development to design a drug target profile.




Pagina | 3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jessiehendricks. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.34. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67232 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$4.34
  • (0)
  Add to cart