100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Kansrekening en statistiek

Rating
-
Sold
1
Pages
32
Uploaded on
19-04-2021
Written in
2019/2020

Samenvatting van de cursus van de prof (Sandra Van Aert)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 19, 2021
Number of pages
32
Written in
2019/2020
Type
Summary

Subjects

Content preview

Tweezijdige toets omtrent de populatievariantie

1) Formuleer de te toetsen hypothesen

H0 : 𝜎 2 = 𝜎02
Ha : 𝜎 2 ≠ 𝜎02

2) Welke steekproefvariabele / toetsingsgrootheid zal je gebruiken om een
beslissing te nemen omtrent deze hypothesen?

de steekproefvariantie 𝑠 2

(𝑛−1)𝑠2
de toetsingsgrootheid 𝜒 = 𝜎02


3) Welke verdeling verwacht je onder de nulhypothese + wat zijn de
gemaakte veronderstellingen?

Voor normaal verdeelde steekproefgegevens:
(𝑛 − 1)𝑆 2 2
~𝜒𝑛−1
𝜎02

4) Maak een schets van de verwachte verdeling van de beschouwde
steekproefvariabele onder H_0 en onder H_1 en duid hierop aan (a) de kans
op een type I fout (rood), (b) de kans op een type II fout (groen), (c) het
onderscheidingsvermogen (zwart gearceerd ||||), (d) het
aanvaardingsgebied, (e) het verwerpingsgebied




Tweezijdige toets omtrent de populatievariantie

,5) Leid een uitdrukking af voor de kritieke waarde bij significantieniveau α

𝛼 = 𝑃((𝑆 2 < 𝑐𝐿 ) of (𝑆 2 > 𝑐𝑈 )|𝜎 2 = 𝜎02 )

(𝑛 − 1)𝑆 2 (𝑛 − 1)𝑐𝐿 (𝑛 − 1)𝑆 2 (𝑛 − 1)𝑐𝑈
𝛼 = 𝑃( < )+𝑃( > )
𝜎02 𝜎02 𝜎02 𝜎02

2
(𝑛 − 1)𝑐𝐿 2
(𝑛 − 1)𝑐𝑈
𝛼 = 𝑃 (𝜒𝑛−1 < ) + 𝑃 (𝜒𝑛−1 > )
𝜎02 𝜎02

2
(𝑛 − 1)𝑐𝐿 (𝑛 − 1)𝑐𝐿 𝜎02 𝜒1− 𝛼
𝛼 2 2 2
;𝑛−1
= 𝑃 (𝜒𝑛−1 < 2 ) ⇒ 𝜒1− 𝛼 = ⇒ 𝑐𝐿 =
2 𝜎0 2
;𝑛−1 𝜎02 𝑛−1


(𝑛 (𝑛 𝜎02 𝜒𝛼2;𝑛−1
𝛼 − 1)𝑐𝑈 − 1)𝑐𝑈
2
= 𝑃 (𝜒𝑛−1 > 2 ) ⇒ 𝜒𝛼2;𝑛−1 = 2 ⇒ 𝑐𝑈 = 2
2 𝜎0 2 𝜎0 𝑛−1
6) Geef een uitdrukking voor de p-waarde

(𝑛 − 1)𝑠 2
𝑠 2 < 𝜎02 : 𝑝 = 2𝑃(𝑆 2 < 𝑠 2 |𝜎 2 = 𝜎02 ) = 2𝑃 (𝜒𝑛−1
2
< )
𝜎02

(𝑛 − 1)𝑠 2
2
𝑠 > 𝜎02 : 2
𝑝 = 2𝑃(𝑆 > 𝑠 |𝜎 = 2 2
𝜎02 ) = 2
2𝑃 (𝜒𝑛−1 > )
𝜎02

7) Formuleer beslissingsregels

aanvaarden H0 : verwerpen H0 :

𝑐𝐿 ≤ 𝑠 2 ≤ 𝑐𝑈 𝑠 2 < 𝑐𝐿 of 𝑠 2 > 𝑐𝑈

2
𝜒1− 𝛼
;𝑛−1
≤ 𝜒 ≤ 𝜒𝛼2;𝑛−1 2
𝜒 < 𝜒1− 𝛼
;𝑛−1
of χ > 𝜒𝛼2;𝑛−1
2 2 2 2


p≥α p<α

8) Geef een uitdrukking voor de kans op een type II fout

𝛽 = 𝑃(𝑐𝐿 ≤ 𝑆 2 ≤ 𝑐𝑈 |𝜎 2 = 𝜎12 )

(𝑛 − 1)𝑐𝐿 (𝑛 − 1)𝑐𝑈
𝛽 = 𝑃( 2 <𝜒< )
𝜎1 𝜎12




Tweezijdige toets omtrent de populatievariantie

,Rechts eenzijdige toets omtrent het populatiegemiddelde met gekende
variantie

1) Formuleer de te toetsen hypothesen

H0 : μ = μ 0
Ha : μ > μ 0

2) Welke steekproefvariabele / toetsingsgrootheid zal je gebruiken om een
beslissing te nemen omtrent deze hypothesen?

het steekproefgemiddelde 𝑥

𝑥−𝜇0
de toetsingsgrootheid 𝑧 =
𝜎⁄√𝑛


3) Welke verdeling verwacht je onder de nulhypothese + wat zijn de
gemaakte veronderstellingen?

Voor normaal verdeelde gegevens of voor een voldoende grote steekproef:
𝜎2
𝑋~𝑁 (𝜇0 , )
𝑛
𝑍~𝑁(0,1)

4) Maak een schets van de verwachte verdeling van de beschouwde
steekproefvariabele onder H_0 en onder H_1 en duid hierop aan (a) de kans
op een type I fout (rood), (b) de kans op een type II fout (groen), (c) het
onderscheidingsvermogen (zwart gearceerd ||||), (d) het
aanvaardingsgebied, (e) het verwerpingsgebied




Rechts eenzijdige toets omtrent het populatiegemiddelde met gekende variantie

, 5) Leid een uitdrukking af voor de kritieke waarde bij significantieniveau α

𝛼 = 𝑃(𝑋 > 𝑐|𝜇 = 𝜇0 )

𝑋 − 𝜇0 𝑐 − 𝜇0
𝛼 = 𝑃( > )
𝜎 ⁄ √𝑛 𝜎⁄√𝑛

𝑐 − 𝜇0 𝑐 − 𝜇0 𝜎
𝛼 = 𝑃 (𝑍 > ) ⇒ 𝑧𝛼 = ⇒ 𝑐 = 𝜇0 + 𝑧𝛼
𝜎 ⁄ √𝑛 𝜎⁄√𝑛 √𝑛

6) Geef een uitdrukking voor de p-waarde

𝑝 = 𝑃(𝑋 > 𝑥|𝜇 = 𝜇0 )

𝑋 − 𝜇0 𝑥 − 𝜇0
𝑝 = 𝑃( > )
𝜎 ⁄ √𝑛 𝜎 ⁄ √𝑛

𝑝 = 𝑃(𝑍 > 𝑧)

7) Formuleer beslissingsregels

aanvaarden H0 : verwerpen H0 :

x≤c x>c

z ≤ z𝛼 z > z𝛼

p≥α p<α

8) Geef een uitdrukking voor de kans op een type II fout

𝛽 = 𝑃(𝑋 < 𝑐|𝜇 = 𝜇1 )

𝑋 − 𝜇1 𝑐 − 𝜇1
𝛽 = 𝑃( < )
𝜎⁄√𝑛 𝜎⁄√𝑛

𝑐 − 𝜇1
𝛽 = 𝑃 (𝑍 < )
𝜎⁄√𝑛




Rechts eenzijdige toets omtrent het populatiegemiddelde met gekende variantie

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
margotverhille1 Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
25
Member since
4 year
Number of followers
14
Documents
17
Last sold
2 months ago

1.5

2 reviews

5
0
4
0
3
0
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions