100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Rolle's Theorem, the Mean Value Theorem, and the Sign of the Derivative solved questions $8.04   Add to cart

Exam (elaborations)

Rolle's Theorem, the Mean Value Theorem, and the Sign of the Derivative solved questions

 1 view  0 purchase
  • Course
  • Institution

Rolle's Theorem, the Mean Value Theorem, and the Sign of the Derivative solved questions

Preview 2 out of 6  pages

  • July 18, 2022
  • 6
  • 2021/2022
  • Exam (elaborations)
  • Questions & answers
avatar-seller
CHAPTER 11

Rolle's Theorem,
the Mean Value Theorem,
and the Sign of the Derivative

11.1 State Rolle's theorem.
f If / is continuous over a closed interval [a, b] and differentiable on the open interval (a, b), and if
/(a) = f(b) = 0, then there is at least one number c in (a, b) such that f ' ( c ) = 0.
In Problems 11.2 to 11.9, determine whether the hypotheses of Rolle's theorem hold for the function/on the
given interval, and, if they do, verify the conclusion of the theorem.
11.2 f(x) = x2 - 2x - 3 on [-1,3].
I f(x) is clearly differentiable everywhere, and /(-I) =/(3) = 0. Hence, Rolle's theorem applies. /'(*) =
2x-2. Setting /'(*) = °> we obtain x = l. Thus, /'(1) = 0 and -KK3.

11.3 /(*) = x" - x on [0,1].
I f(x) is differentiable, with /'(*) = 3*2 -1. Also, /(0)=/(1) = 0. Thus, Rolle's theorem applies.
Setting /'(*) = 0, 3x2 = 1, x2 = 5, x = ±V5/3. The positive solution x = V5/3 lies between 0 and 1.

11.4 f(x) = 9x3-4x on [-§,§].
I f ' ( x ) = 27x2-4 and /(-§ )=/(§) = 0. Hence, Rolle's theorem is applicable. Setting f ' ( x ) = 0,
27x2 = 4, x2=£, * = ±2/3V3 = ±2V3/9. Both of these values lie in [-§, |], since 2V5/9<§.

11.5 /(*) = *3 - 3*2 + * + 1 on[l, 1 + V2].
I /'(*) = 3x2 - 6^ + 1 and /(I) =/(! + V2) = 0. This means that Rolle's theorem applies. Setting
f ' ( x ) = 0 and using the quadratic formula, we obtain x = l±^V6 and observe that 1< 1 + jV~6< 1 + V2.

11.6 on [-2,3].

There is a discontinuity at * = !, since lim f(x) does not exist. Hence, Rolle's theorem does not apply.
X—»1



if x ¥= 1 and x is in [—2, 3]
11.7
if x = \
Notice that x3 -2x2 -5x + 6 = (x - l)(x2 - x -6). Hence, f(x) = x2 - x - 6 if x¥=l and x is in
[-2,3]. But /(*) = -6 = x2 - x - 6 when x = l. So f(x) = x2-x-6 throughout the interval [-2, 3].
Also, note that /(-2) =/(3) = 0. Hence, Rolle's theorem applies. f ' ( x ) = 2x-l. Setting f ' ( x ) = 0, we
obtain x = 5 which lies between —2 and 3.

11.8 f(x) = x2/3~2x1':> on [0,8].
f(x) is differentiable within (0,8), but not at 0. However, it is continuous at x = 0 and, therefore,
throughout [0,8]. Also, /(0)=/(8) = 0. Hence, Rolle's theorem applies. /'(*) = 2/3v^-2/3(vT)2.
Setting f ' ( x ) = 0, we obtain x = 1, which is between 0 and 8.

11.9 if
if
f(x) is not differentiable at * = 1. (To see this, note that, when Ax<0, [/(! + Ax) - 1]/A* = 2 +
Ax-*2 as Ax-»0. But, when A*>0, [/(I + A*) - 1]/A* = -l-» -1 as Ax-»0.) Thus, Rolle's
theorem does not apply.

69

, 70 CHAPTER 11

11.10 State the mean value theorem.
If fix) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there is a
number c in (a, b) such that

In Problems 11.11 to 11.16, determine whether the hypotheses of the mean value theorem hold for the function
f(x) on the given interval, and, if they do, find a value c satisfying the conclusion of the theorem.

11.11 f(x) = 2x + 3 on [1,4].

f ' ( x ) = 2. Hence, the mean value theorem applies. Note that Thus, we can
take c to be any point in (1,4).

11.12 f(x) = 3x2 - 5x + 1 on [2, 5].

/'(*) = 6*— 5, and the mean value theorem applies. Setting we
find which lies between 2 and 5.

11.13 f(x) = x3'4 on [0,16].
/(*) is continuous for x>0 and differentiable for x>0. Thus, the mean value theorem is applicable.
Setting we find which lies between 0 and 16.


11.14 on

Since is differentiable and nonzero on [1,3], f(x) is differentiable on [1,3].




Setting we obtain
The value lies between 1 and 3.

11.15 on
f(x) is differentiable on since on that interval. Setting

we obtain
Both of these values lie in [-3,4].

11.16 on

Since x-4 is differentiable and nonzero on [0, 2], so is/(*). Setting
we obtain The value
lies between 0 and 2.

11.17 Prove that, if f'(x)>0 for all x in the open interval (a, b), then f(x) is an increasing function on (a, b).
Assume a<u<v<b. Then the mean value theorem applies to f(x) on the closed interval (u, v). So, for
some c between u and v, f'(c) = [f(v) - /(«)] /(v - u). Hence, f(v) - /(«) = f'(c)(v - u). Since u<v,
v-u>0. By hypothesis, /'(c)>0. Hence, f(v) -/(«)>0, and /(u) >/(«). Thus,/(A:) is increasing
in (a, ft).
In Problems 11.18 to 11.26, determine where the function/is increasing and where it is decreasing.
11.18 f(x) = 3x + l.
f ' ( x ) = 3. Hence, f(x) is increasing everywhere.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jureloqoo. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.04. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.04
  • (0)
  Add to cart