In Problems 28.1-28.24, find the indicated antiderivative.
28.1 JxV'dx.
We use integration by parts: fudv = uv — f v du. In this case, let M = x2, dv = e * dx. Then dw =
2xdx, v = ~e~*. Hence, J x2e~* dx - -x2e~* + 2 J xe~* dx. [To calculate the latter, we use another
integration by parts: u = x, dv = e~* dx; du = dx, v = —e~*. Then J xe~' dx = — xe~* + J e~" dx =
-xe~' - e'" = -e~"(x + 1).] Hence, J x2e~' dx = -x2e~* + 2[-e~"(x + 1)] + C = -e~"(x2 + 2x + 2) + C.
28.2 / e' sin x dx.
Let M = sin x, dv = e' dx, du = cos x dx, v = e*. Then
e* sin x dx = e" sin x - e* cos x dx. (1)
We use integration by parts again for the latter integral: let u = cos x, dv = e* dx, du = -sin x dx, v = e*.
Then J e' cos x dx = e' cos x + J e* sin x dx. Substituting in (1), J e* sin x dx = e* sin x - (e* cos * +
J e* sin * dx) - e' sin * - e' cos x - J e* sin A: dx. Thus, 2 J e* sin x dx = e* (sin x - cos x) + C, J e v sin x dx
from which je*(sin AT - cos x) + C,.
28.3 / xV dx.
Let M=je 3 , dv = e"dx, du = 3x2, v = ex. Then J xV <fc = *V - 3 J *V dx. But Problem 28.1
gives, with x replaced by-x, J xV dx = c*(x2 -2x + 2) + C. Hence, J xV dx = e'(x3 ~ ^ + 6x - 6) + C.
28.4 /sin ' x dx
Let w = sin ' x, dv = dx, du = ( l / V l -x 2 ) dx, i; = x. Then Jsin 1
x d x = xsin ' x -
2 2 2 1 2 2
(x/Vl - x ) dx = x sin ' (l-x )~" (-2x)dx = xsin^ 2(l-x )" + C = xsnT'x +
T^7 + c.
28.5 J x sin x dx.
Let w = x, d u = s i n x d x , du = dx, v = -cosx. Then J xsin xdx = —xcosx + Jcosx dx =-xcosx +
sin x + C.
28.6 J x2 cos x dx.
Let w = x2, dv = cosxdx, dw = 2xdx, u = sinx. Then, using Problem 28.5, Jx 2 cosxdx =
x sin x — 2 J x sin x dx = x 2 sin x - 2(—x cos x + sin x) + C = (x2 — 2) sin x + 2x cos x + C.
2
28.7 | cos (In x) dx.
Let x = e y ~" /2 , cos (In x) = sin y, dx = ey~"12 dy, and use Problem 28.2: J cos (In x) dx =
2 y 2
e"" J e sin y dy = e~" [^e"(sm y - cos y)} + C = ^x[cos (In x) + sin (In x)] + C.
28.8 f x cos (5x — 1) dx.
Let M = X , dv =cos(5x — 1) dx, du = dx, sin (5x — 1). Then Jxcos(5x—1)
232
, ΙΝΤΕΓΡΑΤΙΟΝ ΒΨ ΠΑΡΤΣ 233
28.9 J e"' cos fee <&.
Let M = cos fee, dv = e""dx, du=-bsinbx, v = (\la)e". Then J e" cos bxdx = (\la)e cos bx +
(b/a) I e°* sin bx dx. Apply integration by parts to the latter: a = sin bx, dv = e°* dx, du = b cos bx,
v = (\ld)e°*. So / e" sin bxdx = (l/a)ea" sin bx - (b/«) JV* cos bxdx. Hence, by substitution,
J e°* cos bx dx = (l/a)e'"'cosbx + (b/a)[(l/a)e'"smbx-(b/a)$ e°*cosbxdx] = (l/a)e" cos fee +
(bla2)eax sin fee - (62/a2) J e* cos fee dx. Thus, (1 + b2/a2) J eaf cos fee dx = (e"/a2)(a cos bx + b sin fee) + C,
f e" cos bx dx = [e"/(a2 +fc"Wo cos fcx + b sin fee) + C,.
28.10 / sin2 x dx.
Let w = sinx, du = sinxdx, du=cosxdx, u = —cosx. Then J sin2 x dx = -sin xcosx + J cos2 x<it =
-sin x cos jc + J (1 - sin2 ;c) dx = —sin x cos * 4- AT - J sin2 x dx. So 2 J sin2 JT dx = x — sin jr cos x + C,
2
f sin x dx= 5 (x - sin jc cos x) + C,.
28.11 f cos3 x dx.
J cos3 je dx = J cos jc (1 - sin2 *) dc = J cos .* dx — / sin2 x cos x dx = sin sin3 x + C.
28.12 | cos4 x dx.
/ cos4 A: (1 + 2 cos 2x + cos2 2x)
28.13 $xe3* dx.
Let M = AT, rfu = e31 dx, du — dx, Then
28.14 J A: sec2 x dx.
Let u = x, dv = sec je dx, da = dx, v = tan x. Then J x sec2 x dx = x tan x - J tan x dx = x tan x —
Inlsecxl + C.
28.15 J je cos2 x dx.
Let M = x, dv = cos2 A: etc, du = dx, Then J" x cos2 x dx =
(2 sin 2x +
cos 2*) + C.
28.16 J (In x)2 dr.
Let x = e" and use Problem 28.1: J (Inx) 2 dx = -/ fV dt = e~'(t2 + 2t + 2) + C = x[(lnx) 2 -
2 In x + 2] + C.
28.17 J x sin 2x dx.
Let 2* = y and use Problem 28.5: / * sin 2x dx y sin y dy (-y cos y + sin y) + C =
(-2x cos 2x + sin 2*) + C.
28.18 J x sin (x2) dx.
Use a substitution M = x2, du = 2x dx. Then / x sin x2 sin u du = cos u + C =
cos x + C.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller jureloqoo. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $8.04. You're not tied to anything after your purchase.