Samenvatting Inleiding Analyse
Hoorcollege 1 + 2
Termen
∞ oneindig (kan −∞ of +∞ zijn)
∀ alle, willekeurig
∃ er bestaat
f lege verzameling { }
Î element van
Ï geen element van
⊆ deelverzameling (kan gelijk zijn)
⊂ echte verzameling (kan niet gelijk zijn)
È vereniging van verzamelingen
Ç doorsnede van verzamelingen
Ac complement van de verzameling A, alles wat buiten A valt
|A| kardinaliteit (= hoeveelheid elementen) in de verzameling A
1A karakteristieke functie voor de verzameling A
S som
⇔ ’dan en slechts dan als’
Þ als… dan…
¬ niet
Ù en
Ú of
U = Universum waarbinnen je moet blijven
P(A) = Powerset van A, deelverzamelingen van A
A = {1,2}
P(A) = {{1,2}, {1}, {2}, f}
A = {1,2} = Lijstnotatie
A = {r Î N | 1 £ r £ 2} = Set builder notatie
Eindige kardinaliteit: A = {1,2,3,4}
Telbaar oneindige kardinaliteit: A = {1,2,3,4,…}, dan |A| = |N| = À0 = alef-nul
Ontelbaar oneindige kardinaliteit A = (1,1), dan |A| = |R| = c = continuüm
Kardinaliteit P(A) is |P(A)| = 2|A|
Definities, wetten en bewijzen te gebruiken
A = D Û (A Í D en D Í A)
A = D Û (" x Î A Û x Î D)
A Í D Û (" x Î A Þ x Î D) def. Í
x Î A Û {x} Í A def. Í
{x} Í A Û {x} Î P(A) def. P
A \ B = {x Î U | x Î A EN x Ï B} def. \
A È B = {x Î U | x Î X OF x Î Y} def. È
A Ç B = {x Î U | x Î X EN x Î Y} def. Ç
Ac = {x Î U | x Ï A} def. c
A È (B Ç C) = (A È B) Ç (A È C) distributieve wet (distr.)
A Ç (B È C) = (A Ç B) È (A Ç C) distributieve wet (distr.)
(A È B)c = Ac Ç Bc De Morgan’s law (D.M.)
(A Ç B)c = Ac È Bc De Morgan’s law (D.M.)
A, f Í A
Ac = U \ A
, A \ B = A Ç Bc
Uc = f en fc = U
Ac Ç A = f en Ac È A = U
Als P Í Q, dan P È Q = Q en P Ç Q = P
AÇf=f
AÈf=A
Als A Í B en B Í C dan A Í C
Als |A| = |D| dan A ~ D
Twee verzamelingen aan elkaar koppelen
1. E Ì N met E = {1,3,5,7,…} en N = {0,1,2,3,…}
2. f : N à E
3. f(n) = 2n + 1 (1-op-1 relatie)
4. N ~ E, dus dan zelfde kardinaliteit
Bewijs uit het ongerijmde: neem aan dat de stelling niet waar is en laat zien dat die aanname
tot een tegenspraak leidt
Bewijs dat een verzameling oneindig is: laat zien dat het equivalent is aan een van zijn echte
deelverzamelingen
(¬¬p) Û p dubbele ontkenning
(p ∧ q) Û (q ∧ p) communicativiteit (comm.)
(p ∨ q) Û (q ∨ p) communicativiteit (comm.)
[(p ∧ q) ∧ r] Û [p ∧ (q ∧ r)] associativiteit (ass.)
[(p ∨ q) ∨ r] Û [p ∨ (q ∨ r)] associativiteit (ass.)
[(p ∧ q) ∨ r] Û [(p ∨ r) ∧ (q ∨ r)] distributieve wet logica (d.w.l.)
[(p ∨ q) ∧ r] Û [(p ∧ r) ∨ (q ∧ r)] distributieve wet logica (d.w.l.)
¬(p ∧ q) Û (¬p ∨ ¬q) De Morgan’s wet logica (D.M.l)
¬(p ∨ q) Û (¬p ∧ ¬q) De Morgan’s wet logica (D.M.l)
(p Û q) Û [(p Þq) ∧ (¬p Þ¬q)] voldoende en noodzakelijke conditie
[(p Þ q) ∧ (q Þr)] ⇒ (p Þ r) transitiviteit
p q ¬p ¬q pÙq pÚq pÞq ¬q Þ ¬p ¬( p Ù q) ¬p Ú ¬q
T T F F T T T T F F
T F F T F T F F T T
F T T F F T T T T T
F F T T F F T T T T
Hoorcollege 3 + 4
Wiskundige inductie voor " n Î N, laat P(n) een stelling zijn afhankelijk van n. Ga
ervan uit dat de 2 volgende voorwaardes zijn vervuld
1. P(1) is waar
2. Voor " k Î N, als P(k) waar is dan P(k + 1) is waar. Dan
P(n) is waar voor " n Î N
Stappen wiskundige inductie
1. Basisstap (B.S.)
Laat zien dat de stelling waar is voor het eerste mogelijke getal
2. Inductie hypothese (I.H.)
Selecteer een willekeurige k Î N, k ³ 0 (0 mag ook een ander getal zijn, het laagst
mogelijk getal waarvoor je het gaat bewijzen met k) en neem aan dat de stelling waar
is voor n = k. Deze stelling met n = k is de inductie hypothese.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller LeonVerweij. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.50. You're not tied to anything after your purchase.