100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Statistics (FEB21007X)

Rating
-
Sold
1
Pages
8
Uploaded on
06-09-2022
Written in
2019/2020

Comprehensive summary of Statistics (econometrics EUR)

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 6, 2022
Number of pages
8
Written in
2019/2020
Type
Summary

Subjects

Content preview

Week 1
Random sampling assumption
Independent and identically distributed (i.i.d) random variables 𝑋! , … , 𝑋" with pdf 𝑓(𝑥; 𝜃),
where the parameter 𝜃 is unknown. 𝜃 lies in some parameter space Ω
Type of means
Population mean: the mean that is a characteristic of the type of the distribution
!
Sample mean: the observed mean, calculated as 𝑋+ = " ∑"#$! 𝑋#
Variables/value
The unknown/unobserved are random variables in uppercase, 𝑋! , … , 𝑋" ~(𝑖. 𝑖. 𝑑) 𝑓(𝑥; 𝜃)
The data consists of observed values in lower case from the random process, 𝑥! , … , 𝑥"
Estimates/estimate
An estimator 𝑇 = 𝑡(𝑋! , … , 𝑋" ) is a function of the random variables 𝑋! , … , 𝑋" , so also a rv
An estimate 𝑇 = 𝑡(𝑥! , … , 𝑥" ) is the observed value of the estimator 𝑇 (the function value) based
on the observed values 𝑥! , … , 𝑥"
Method of moments estimator (MME)
! %
Population moments: 𝐸6𝑋% 7 = 𝜇%& (𝜃! , … , 𝜃' ) and sample moments: " ∑"#$! 𝑋# = 𝑀%&
Obtain an estimator of the unknown parameter 𝜽 = (𝜃! , … , 𝜃' ) by equating population
moments to sample moments
Maximum likelihood estimator (MLE)
Use the value of the unknown parameter 𝜽 = (𝜃! , … , 𝜃' ) that is most likely to have generated
the observed data as estimate. The likelihood function is defined as 𝐿(𝜽) = 𝑓(𝑋! , … , 𝑋" ; 𝜽)
For a random sample 𝑋! , … , 𝑋" we have 𝐿(𝜽) = ∏"#$! 𝑓(𝑋# ; 𝜽)
The MLE 𝜽= = 6𝜃>! , … , 𝜃>' 7 is the value of 𝜽 that maximizes 𝐿(𝜽)
Maximum of 𝐿(𝜽)
(
Compute MLE as the solution of () 𝐿(𝜽) = 0, but it is not always possible to compute
(
∏"#$! 𝑓(𝑋# ; 𝜽). Taking the logarithm of 𝐿(𝜽) gives the log-likelihood ln6𝐿(𝜽)7, then compute
()
( (!
()
ln6𝐿(𝜽)7 = 0 and check if ()! ln6𝐿(𝜽)7 < 0. If 𝐿(𝜽) is not differentiable, mathematical
reasoning is required
Invariance properties
If 𝜃> is the MLE of 𝜃 and if 𝑢(𝜃) is a function of 𝜃, then 𝑢6𝜃>7 is an MLE of 𝑢(𝜃)
= = 6𝜃>! , … , 𝜃>' 7 denotes the MLE of 𝜽 = (𝜃! , … , 𝜃' ), then the MLE of
If 𝜽
𝜏(𝜽) = 6𝜏! (𝜽), … , 𝜏* (𝜽)7 is 𝜏6𝜽 =7 = E𝜏! 6𝜽
=7, … , 𝜏* 6𝜽
= 7F for 1 ≤ 𝑟 ≤ 𝑘
Unbiased estimator
An estimator 𝑇 is said to be an unbiased estimator of 𝜏(𝜃) if 𝐸(𝑇) = 𝜏(𝜃) for all 𝜃 ∈ Ω.
Otherwise, we say that 𝑇 is a biased estimator of 𝜏(𝜃)
The bias is defined as 𝐵𝑖𝑎𝑠(𝑇) = 𝐸(𝑇) − 𝜏(𝜃). With an unbiased estimator, on average the true
value is estimated (an accurate estimator)
Mean squared error (MSE)
+
If 𝑇 is an estimator of 𝜏(𝜃), then the MSE of 𝑇 is given by 𝑀𝑆𝐸(𝑇) = 𝐸6𝑇 − 𝜏(𝜃)7
+
Moreover, 𝑀𝑆𝐸(𝑇) = 𝑉(𝑇) + 6𝐵𝑖𝑎𝑠(𝑇)7 , so if 𝑇 is unbiased, the 𝑀𝑆𝐸(𝑇) = 𝑉(𝑇)
Uniformly minimum variance unbiased estimator (UMVUE)
An estimator 𝑇 ∗ of 𝜏(𝜃) is called a UMVUE of 𝜏(𝜃) is 𝑇 ∗ is unbiased for 𝜏(𝜃) and for any other
unbiased estimator 𝑇 of 𝜏(𝜃), 𝑉(𝑇 ∗ ) ≤ 𝑉(𝑇) for all 𝜃 ∈ Ω
Cramer-Rao lower bound (CRLB)
!
-." ())1
If 𝑇 is an unbiased estimator of 𝜏(𝜃), then the CRLB is 𝑉(𝑇) ≥ # ! or
"23 4567(8;)):;
#$

, !
-." ())1
𝑉(𝑇) ≥ #!
. If an unbiased estimator equals the CRLB, it is a UMVUE
<"2= ! 4567(8;)):>
#$
Relative efficiency
The relative efficiency of an unbiased estimator 𝑇 of 𝜏(𝜃) to another unbiased estimator 𝑇 ∗ of
?(@ ∗ )
𝜏(𝜃) is given by 𝑟𝑒(𝑇, 𝑇 ∗ ) = ?(@)
Efficiency
An unbiased estimator 𝑇 ∗ of 𝜏(𝜃) is said to be efficient if 𝑟𝑒(𝑇, 𝑇 ∗ ) ≤ 1 for all unbiased
estimators 𝑇 of 𝜏(𝜃), and all 𝜃 ∈ Ω. The efficiency of an unbiased estimator 𝑇 of 𝜏(𝜃) is given by
𝑒(𝑇) = 𝑟𝑒(𝑇, 𝑇 ∗ ) if 𝑇 ∗ is an efficient estimator of 𝜏(𝜃).
An unbiased estimator that reaches the CRLB is efficient and an efficient estimator is UMVUE
Estimator with several unknown parameters
If 𝑋! , … , 𝑋" have pdf 𝑓(𝑥; 𝜃! , … , 𝜃' ), solve the system of equations with 𝑘 equations.
! !
For MME, the system is: 𝐸(𝑋! ) = " ∑"#$! 𝑋#! , … , 𝐸(𝑋 ' ) = " ∑"#$! 𝑋#'
For MML, the system is all the 𝑘 partial derivatives of the log-likelihood equal to 0

Week 2
Simple consistency
Let {𝑇" } be a sequence of estimators of 𝜏(𝜃). These estimators are said to be consistent
estimators of 𝜏(𝜃) if for every 𝜀 > 0, lim 𝑃(|𝑇" − 𝜏(𝜃)| < 𝜀) = 1 for every 𝜃 ∈ Ω
"→B
C
This is equivalent to lim 𝑃(|𝑇" − 𝜏(𝜃)| > 𝜀) = 0. The notation is 𝑇" → 𝜏(𝜃)
"→B
A consistent estimator converges in probability to the true value
MSE consistency
If {𝑇" } be a sequence of estimators of 𝜏(𝜃), then they are called MSE consistent if
+
lim 𝐸6𝑇" − 𝜏(𝜃)7 = 0 for every 𝜃 ∈ Ω. MSE consistency ⟹ (simple) consistency
"→B
Asymptotically unbiased estimator
A sequence of estimators {𝑇" } is said to be asymptotically unbiased for 𝜏(𝜃) if lim 𝐸(𝑇" ) = 𝜏(𝜃)
"→B
for all 𝜃 ∈ Ω. Estimator is MSE consistent ⟺ it is asymptotically unbiased and lim 𝑉( 𝑇" ) = 0
"→B
Law of Large Numbers (LLN)
If 𝑋! , … , 𝑋" is a random sample from a distribution with finite mean and variance, then
! C
𝑋+" = " ∑"#$! 𝑋# → 𝐸(𝑋)
Continuous mapping theorem
C C
If 𝑌" → 𝑐, then for any function 𝑔(𝑦) that is continuous at 𝑐, 𝑔(𝑌" ) → 𝑔(𝑐)
This is also valid for 𝑘-dimensional vectors
Convergence in probability results theorem
C C
If 𝑋" and 𝑌" are two sequences of random variables such that 𝑋" → 𝑐 and 𝑌" → 𝑑, then:
C
- 𝑎𝑋" + 𝑏𝑌" → 𝑎𝑐 + 𝑏𝑑
C
- 𝑋" 𝑌" → 𝑐𝑑
C
- 𝑋" /𝑐 → 1 for 𝑐 ≠ 0
C
- 1/𝑋" → 1/𝑐 if 𝑐 ≠ 0
C
- g𝑋" → √𝑐 if 𝑐 > 0
$8.48
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Follow You need to be logged in order to follow users or courses
Sold
33
Member since
7 year
Number of followers
19
Documents
28
Last sold
5 months ago

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions