In this file, I have summarized all the exam-related material. This includes a summary per week of the lecture material along with a summary of the literature and a summery per week of each tutorial.
To top that off, in week 6, I have added the tutorial assignment with all the answers (this is ...
introduction to data protection and data analytics
the grounds of processing under the
Written for
Vrije Universiteit Amsterdam (VU)
Artificial Intelligence
Data Analytics and Privacy (R_DAP)
All documents for this subject (1)
Seller
Follow
tigovangerven
Reviews received
Content preview
Data Analytics and Privacy (R_DAP)
All Lectures and Tutorials Summary
,Lecture 1 - Summary
Course introduction, overview, and why privacy is important
Data analysis is a process of inspecting, cleansing, transforming and modelling data with the goal of
discovering useful information, informing conclusions and supporting decision-making.
Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to
extract knowledge and insights from many structural and unstructured data.
Data collection and pre-processing are always the first steps of a Business Analytics project
• Descriptive (what happened?) → just grasping is what is in your data
- Activities
- Results
• Diagnostic (Why did it happen?) → whatever we can understand from the data
- Content correlations
- W/L analysis
• Predictive (What will happen next?)
- Lead scoring
- Sales forecast
• Prescriptive (How can we make it happen?)
- Content recommendations based on passed activities & demographics
- Opportunity prioritization
Goal: reach the prescriptive state
Data
Big data is data with 3Vs
1. Volume - Enormous amounts of data (zettabytes)
2. Velocity - Real time stream of data
3. Variety - Data from a range of sensors, with different types
Problems with big data
What makes privacy of Big Data a problem different to traditional privacy? Scale!
- Lack of control and transparency (about what is being collected from us and what is happening with it)
- Data reusability (data is used for other things than the initial purpose)
- Data inference and re-identification
Most BA projects do not involve big data, but use with relatively small and structured data sets.
Structured data sets:
Used by most predictive techniques. Usually consists of entries (e.g. people) with attributes (e.g., name,
income, sex, nationality).
Unstructured data sets:
Has no structure. It might be data from cameras, social media sites, text entered in free text fields, etc..
Unstructured data is the majority of the data that is stored today, and it is often also big data. When
working with unstructured data, the first step is often to extract features to make it structured and
therefore suitable as input for an algorithm working with structured data (e.g., images from road-side
cameras are used to extract license plates which are then used to analyze the movement of cars).
, Tutorial 1 - Tutorial Notes
Privacy is Dead! Long Live Privacy!
Workgroup Discussion:
1. In what ways could data compromise our autonomy? Our human dignity? Our
rationality?
2. Are there ‘no-go’ areas for computer scientists? Should there be?
3. What role for law in computer science? What role for computer science in law?
4. Where should the intervention of law be in building digital technology?
Tutorial attendees will be asked to think about the design of an app (description will be
provided). Students will be asked to identify what parts of their lives might be
compromised by the design of the app.
Important questions to think about:
What app data can infer what private data? For example:
• Location data can infer religious data (if someone is at the location of a church every Sunday)
• Diet + physical + medical data can infer religion (if someone is not eating for an entire day during
Ramadan)
Apps get a lot of data, and each data combination can infer something as well, like habits, religion, diets.
Speed of typing becomes a diagnostic test, people who are typing at a certain rate can have cross
references with a dementia patient.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller tigovangerven. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $14.70. You're not tied to anything after your purchase.