100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Stochastic Processes II - Lecture Notes

Rating
-
Sold
-
Pages
28
Uploaded on
06-05-2023
Written in
2010/2011

Columbia Business School - First Year of the Doctoral Program in Decisions, Risk and Operations • Stochastic processes o Notes from Prof Assaf Zeevi's "Foundations of Stochastic Modelling". o Notes from Prof David Yao's "Stochastic Processes II".

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Course

Document information

Uploaded on
May 6, 2023
Number of pages
28
Written in
2010/2011
Type
Summary

Subjects

Content preview

Stochastic Processes II Page 1



STOCHASTIC PROCESSES II

PART I – MARTINGALES


Conditional expectations
 Measure theory
o In a probability space (W,  , ) , a sigma field  is a collection of events, each of
which as a subset of W . It satisfies (i) Æ Î  (ii) A Î   Ac Î  (iii)
Ai Î   Èi¥=1 Ai Î  . Notes:
 (i) and (ii)  W Î 

( )
c
¥ ¥
  A =
i =1 i
Ac , so also closed under infinite (and finite) intersection.
i =1 i


o A random variable maps X (w) : W   . When we say X is measurable with
respect to  and write X Î  , we mean {w : X (w) £ x } Î  "x .

 Conditional expectations
o (X | Y ) is a random variable. (X | Y )(w) =  (X | Y = Y (w)) . In other words,

the fact Y = Y (w) “reveals” a “region” of W in which we are located. We then
find the expected value of X given we are in that “region”.
 In terms of the definition below, we can write (X | Y ) = (X | s(Y )) ,
where s(Y ) is the sigma-field generated by Y – in other words,

s(Y ) = {{w : Y (w) £ x } : x Î } – every event can would be revealed by

Y.
o W = (X | ) is a random variable. (X | )(w) is a bit harder to understand –
effectively, it takes the expectation of X over the smallest  that contains w . In
other words, let A be the smallest element of  that contains w – then we
restrict ourselves to some region of W and find the expectation over that region;
(X |  )(w) = (X A ) . Formal properties:




Daniel Guetta

,Stochastic Processes II Page 2


 W Î  : information as to where we are in W only ever “reaches” us via
knowledge of which part of  we’re in, so this is obvious.
  (W A ) =  (X A ) for all A Î  : we are now restricting ourselves to a

region of W that is  -measurable. Provided A is the smallest element for
which w Î A , W (w) = (X A ) , and the result follows trivially. (If it is
not the smallest element, the result requires additional thought).
o Some properties
i.  éêëX |  ùúû if X Î 

ii.  éê  éêëX |  ùúû ùú = (X )
ë û
iii.  (XZ |  ) = Z  (X |  ) if Z Î 

iv. Tower:  éê  (X |  ) |  ùú =  (X |  ) if  Í  : in this case,  is “more
ë û
descriptive” than  , so the result makes sense.

( ( ) )
Proof: Use    (X |  ) |  A =   (X |  ) A ( ) for A Î  . Then use

the fact that A Î  to show this is equal to  (X A ) . 

v. Linearity

(
vi. Jensen’s: for convex f,  éêë f (X ) |  ùûú ³ f  éêëX |  ùúû )
o Notes
  éêëX ùúû =  éêëX | {Æ, W}ùúû (the RHS is a constant, because whatever w we

choose, the only element of {Æ, W} that contains it will be W ). Thus, (ii)
is a special case of (iv).
 Integrability of X implies integrability of  éêëX |  ùûú :
(vi) (ii)
 
é
ë
ù
û ë (
 ê (X |  ) ú £  éê  X |  )ù =  X
ûú ( )
o Example: Let W be countable. Let  = {1 , 2 , } be a partition of W , and 
å w Î i X ( w )( w )
be the set of all subsets of  . Then (X |  ) takes value ( i )
with

probability (i ) .




Daniel Guetta

, Stochastic Processes II Page 3


Proof: Clearly, the RV is  measurable, because each value it can take is

defined by a i . Also,  éêë (X | )A ùûú is the expected value over those i Í A .

Clearly, =  éëêX A ùûú . 



Martingales
 Definition: {Xn } is a sub-martingale with respect to {n } (where n Î n+1 ) if
i. X n Î n
ii. (X n ) < ¥ [it is often convenient to work with the stronger condition

 Xn < ¥ ].

iii.  éëêXn +1 | n ùûú ³ Xn [< gives a super-martingale, = gives a martingale]. Implies the

weaker property  éêëXn +1 ùûú ³  éëêXn ùûú

 Remarks:
o A convex function of a martingale is a submartingale.
o An increasing convex function of a submartingale is a submartingale.
Proof: (i) and (ii) are simple.  éêë f (Xn +1 ) | n ùúû ³ f ( [Xn +1 | n ]) ³ f (Xn ) . 

å
n
 Example: Let S n = i =1
X i , where the Xi are IID with (Xi ) = 0,  Xi < ¥
o Sn is a martingale [  Sn £ n  X1 ] (the mean martingale).

o If ar(X i ) = s 2 < ¥ , X n2 - s 2n is a martingale (the variance martingale). 
qX1 qSn
 Example (the exponential martingale): Let j(q) = (e ) . Mn = e / jn (q) is a

å
n
martingale. For example, if S n = i =1
Xi is an asymmetric random walk with

( )
Sn
1-p
p = (X i = 1) = 1 - (X i = -1) , then M n = p
is an exponential martingale, with
1-p
eq = p
and j(q) = 1 . 
 Example: Suppose an urn starts with one black and one white ball. We pull out balls
from the urn, and return them to the urn with another, new ball of the same color. Yn,
the proportion of white balls after n draws, is a martingale (mean ½). 
 Example: Let {Xn } be a Markov Chain with transition matrix P(x, y) and let h(x) be a
bounded function with h(x ) = å y p(x, y )h(y ) . {h(Xn )} is then a martingale. 




Daniel Guetta
$2.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
tandhiwahyono
2.0
(1)

Get to know the seller

Seller avatar
tandhiwahyono University of Indonesia
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
3 year
Number of followers
8
Documents
861
Last sold
1 year ago
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions