100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Complete Solution Manual Linear Algebra A Modern Introduction 4th Edition David Poole $16.99
Add to cart

Exam (elaborations)

Complete Solution Manual Linear Algebra A Modern Introduction 4th Edition David Poole

3 reviews
 522 views  9 purchases
  • Course
  • Linear Algebra
  • Institution
  • Linear Algebra

Linear Algebra A Modern Introduction 4th Edition David Poole Solutions Manual Complete Solution Manual Linear Algebra A Modern Introduction 4th Edition David Poole PDF File All Pages All Chapters Grade A+

Preview 4 out of 937  pages

  • June 21, 2023
  • 937
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
  • linea
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • Linear Algebra
  • Linear Algebra

3  reviews

review-writer-avatar

By: hadrienhebert • 5 months ago

review-writer-avatar

By: agaathdevries3 • 10 months ago

reply-writer-avatar

By: gradexam • 10 months ago

We sincerely appreciate your outstanding 5-star review of this document. Your feedback means a great deal to us!

review-writer-avatar

By: piyachat • 10 months ago

useless

avatar-seller
gradexam
Linear Algebra A Modern Introduction 4th Edition David Poole Solutions Manual Contents 1 Vectors 3 1.1 The Geometry and Algebra of Vectors ................................ ................................ ................................ ...... 3 1.2 Length and Angle: The Dot Product ................................ ................................ ................................ . 10 Exploration: Vectors and Geometry ................................ ................................ ................................ .................. 25 1.3 Lines and Planes ................................ ................................ ................................ ................................ ......... 27 Exploration: The Cross Product ................................ ................................ ................................ ................. 41 1.4 Applications ................................ ................................ ................................ ................................ ................. 44 Chapter Review ................................ ................................ ................................ ................................ .................... 48 2 Systems of Linear Equations 53 2.1 Introduction to Systems of Linear Equations ................................ ................................ .......................... 53 2.2 Direct Methods for Solving Linear Systems ................................ ................................ ............................. 58 Exploration: Lies My Computer Told Me ................................ ................................ ................................ .. 75 Exploration: Partial Pivoting ................................ ................................ ................................ ....................... 75 Exploration: An Introduction to the Analysis of Algorithms ................................ ................................ .......... 77 2.3 Spanning Sets and Linear Independence ................................ ................................ ................................ .79 2.4 Applications ................................ ................................ ................................ ................................ ................. 93 2.5 Iterative Methods for Solving Linear Systems ................................ ................................ ...................... 112 Chapter Review ................................ ................................ ................................ ................................ ................. 123 3 Matrices 129 3.1 Matrix Operations ................................ ................................ ................................ ................................ .... 129 3.2 Matrix Algebra ................................ ................................ ................................ ................................ .. 138 3.3 The Inverse of a Matrix ................................ ................................ ................................ .......................... 150 3.4 The LU Factorization ................................ ................................ ................................ ......................... 164 3.5 Subspaces, Basis, Dimension, and Rank ................................ ................................ ................................ 176 3.6 Introduction to Linear Transformations ................................ ................................ ................................ 192 3.7 Applications ................................ ................................ ................................ ................................ .............. 209 Chapter Review ................................ ................................ ................................ ................................ ................. 230 4 Eigenvalues and Eigenvectors 235 4.1 Introduction to Eigenvalues and Eigenvectors ................................ ................................ ..................... 235 4.2 Determinants ................................ ................................ ................................ ................................ ............ 250 Exploration: Geometric Applications of Determinants ................................ ................................ ................ 263 4.3 Eigenvalues and Eigenvectors of n × n Matrices ................................ ................................ ................. 270 4.4 Similarity and Diagonalization ................................ ................................ ................................ ......... 291 4.5 Iterative Methods for Computing Eigenvalues ................................ ................................ ..................... 308 4.6 Applications and the Perron -Frobenius Theorem ................................ ................................ ................ 326 Chapter Review ................................ ................................ ................................ ................................ ................. 365 1 2 CONTENTS 5 Orthogonality 371 5.1 Orthogonality in Rn................................ ................................ ................................ ................................ ................................ .......... 371 5.2 Orthogonal Complements and Orthogonal Projections ................................ ................................ ....... 379 5.3 The Gram -Schmidt Process and the QR Factorization ................................ ................................ .. 388 Exploration: The Modified QR Process ................................ ................................ ................................ ... 398 Exploration: Approximating Eigenvalues with the QR Algorithm ................................ ......................... 402 5.4 Orthogonal Diagonalization of Symmetric Matrices ................................ ................................ ............ 405 5.5 Applications ................................ ................................ ................................ ................................ ............... 417 Chapter Review ................................ ................................ ................................ ................................ .................. 442 6 Vector Spaces 451 6.1 Vector Spaces and Subspaces ................................ ................................ ................................ ................. 451 6.2 Linear Independence, Basis, and Dimension ................................ ................................ ......................... 463 Exploration: Magic Squares ................................ ................................ ................................ ............................. 477 6.3 Change of Basis ................................ ................................ ................................ ................................ ........ 480 6.4 Linear Transformations ................................ ................................ ................................ ............................ 491 6.5 The Kernel and Range of a Linear Transformation ................................ ................................ ............. 498 6.6 The Matrix of a Linear Transformation ................................ ................................ ................................ 507 Exploration: Tiles, Lattices, and the Crystallographic Restriction ................................ ........................ 525 6.7 Applications ................................ ................................ ................................ ................................ ............... 527 Chapter Review ................................ ................................ ................................ ................................ .................. 531 7 Distance and Approximation 537 7.1 Inner Product Spaces ................................ ................................ ................................ ............................... 537 Exploration: Vectors and Matrices with Complex Entries ................................ ................................ ...... 546 Exploration: Geometric Inequalities and Optimization Problems ................................ .............................. 553 7.2 Norms and Distance Functions ................................ ................................ ................................ ............... 556 7.3 Least Squares Approximation ................................ ................................ ................................ ................. 568 7.4 The Singular Value Decomposition ................................ ................................ ................................ ........ 590 7.5 Applications ................................ ................................ ................................ ................................ ............... 614 Chapter Review ................................ ................................ ................................ ................................ .................. 625 8 Codes 633 8.1 Code Vectors ................................ ................................ ................................ ................................ ............. 633 8.2 Error -Correcting Codes ................................ ................................ ................................ ........................... 637 8.3 Dual Codes ................................ ................................ ................................ ................................ ................ 641 8.4 Linear Codes ................................ ................................ ................................ ................................ ............. 647 8.5 The Minimum Distance of a Code ................................ ................................ ................................ ......... 650 −3 0 −3 −3 3 0 −3 3 0 −3 −2 −5 Chapter 1 Vectors 1.1 The Geometry and Algebra of Vectors 1. 2. Since 2 + 3 = 5 , 2 + 2 = 4 , 2 + −2 = 0 , 2 + 3 = 5 , plotting those vectors gives – – – – – 3 (–2, 3) 3 (2, 3) 2 1 –2 –1 1 2 (3, 0) 3 –1 (3, –2) –2 1 2 3 4 5 1 c b 2 a 3 d 4 5 4 CHAPTER 1. VECTORS #−−−−» — − − 2 2 2 2 6 3 2 3 6 6 #−−−−» 3 2 a 1 c b d –1 1 2 3 3. c 4. Since the heads are all at (3, 2, 1), the tails are at 3 0 3 3 3 0 3 1 2 3 −1 4 2 − 2 = 0 , 2 − 2 = 0 , 2 − −2 = 4 , 2 − −1 = 3 . 1 0 1 #−−−−» 1 1 0 1 1 0 1 −2 3 5. The four vectors AB are – – In standard position, the vectors are #−−−−» (a) AB = [4 1, 2 ( 1)] = [3, 3]. #−−−−» (b) AB = [2 − 0, −1 − (−2)] = [2, 1] (c) AB = 1 − 2, 3 − 3 = − 3 , 3 (d) AB = 1 − 1 , 1 − 1 = − 1 , 1 . 2 z 1 b –2 –1 0 1 y 2 0 –1 0 1 a 2 3 x –1 d –2 3 c 2 1 d a 1 2 3 4 1 b 2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller gradexam. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $16.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$16.99  9x  sold
  • (3)
Add to cart
Added