100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Mixed Signal Design UNIT 1 $7.99   Add to cart

Class notes

Mixed Signal Design UNIT 1

 1 view  0 purchase
  • Course
  • Institution

CHAPTER 1 Physics of MOS Transistors 1.1 Introduction 1.1.1 Why Silicon? 1.1.2 CMOS Fabrication Process 1.1.3 Photolithography 1.2 Physics of MOS Transistors 1.2.1 Transistor Action 1.2.2 Modeling of the MOS Transistor 1.2.3 Transconductance and Output Characteristics 1.2.4 Channel le...

[Show more]

Preview 3 out of 30  pages

  • July 8, 2023
  • 30
  • 2022/2023
  • Class notes
  • Dr. rajath vasudevamurthy
  • All classes
avatar-seller
16EC6DCMSD Mixed Signal Design
6th Semester B. E. Class Notes


Dr. Rajath Vasudevamurthy

,Contents

1 Physics of MOS Transistors 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Why Silicon? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 CMOS Fabrication Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Physics of MOS Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Transistor Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Modeling of the MOS Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Transconductance and Output Characteristics . . . . . . . . . . . . . . . . . . . 6
1.2.4 Channel length modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Body effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.6 Velocity Saturation Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Small-signal model (low frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Small-signal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Transistor biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Single Stage Amplifiers 14
2.1 Common Source amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 PMOS (current source) load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Diode-connected load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Common Source amplifier with source degeneration . . . . . . . . . . . . . . . . . . . . 17
2.3 Source follower (Common Drain Amplifier) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Common Gate amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 CS-CG cascode amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Superior gain than single transistor for same voltage swing . . . . . . . . . . . . 23
2.5.2 Shielding property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Folded Cascode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Current Mirrors 26
3.1 Basic Current Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Current Mirror with Source Degeneration . . . . . . . . . . . . . . . . . . . . . 27
3.2 Cascode Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Cascode Current Mirror with Improved Output Voltage Swing . . . . . . . . . . 29
3.2.2 Low voltage current mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29




2

, Chapter 1

Physics of MOS Transistors

1.1 Introduction
1.1.1 Why Silicon?
• The same silicon substance can be converted to an insulator by oxidation (SiO2 ) and its conduc-
tivity can be precisely controlled by controlling the doping.
• Since both insulator and conductor are developed on the same material, the crystal defects which
can occur while interfacing different materials can be avoided.
• Materials of n-type and p-type conductivity can be prepared by doping with pentavalent (Ex: phos-
phorous, arsenic) and trivalent (Ex: boron, aluminum) impurities respectively.

1.1.2 CMOS Fabrication Process
Sequence of steps necessary to fabricate n-channel (NMOS) and p-channel (PMOS) transistors starting
from a 99.99% pure silicon wafer is described below. The entire silicon wafer is lightly doped with
trivalent impurity to make p− bulk substrate. NMOS transistors are fabricated on this p− substrate, while
PMOS transistors need to be fabricated in an n-well.
Oxidation The topmost layer of silicon wafer is oxidized by passing oxygen to create an insulation layer
(SiO2 ) and for protection
Etch oxide The oxide is etched away from those regions where transistors need to be fabricated by the
process of photolithography
Diffusion for n-well Pentavalent impurities are diffused into the regions where PMOS transistors are
desired to create an n-well
Deposition field oxide for isolation between transistors. In the newer technologies, a shallow trench is
formed in the substrate and filled with an insulating material for isolation. Trench isolation allows
closes placement of transistors as compared to field oxide isolation.
Poly-deposition to create the gate of the transistors.
Diffusion for source & drains Pentavalent impurities for NMOS and trivalent impurities for PMOS
transistors
Deposition of oxide for insulation and protection of lower layers
Drilling through the oxide to create contacts for source, drain, gate (and bulk) terminals
Deposition of Metal 1 to create desired connections between transistors and power supply
After each step, the topmost layer of the wafer has to be maintained perfectly horizontal so that no
gradient in deposition or diffusion occurs in the subsequent steps. Also, perfect alignment of the wafer
as it goes through the various processes listed above has to be ensured so that the orientation of the
transistors are as desired.

3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller ankithaselectronicsengineering. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.99
  • (0)
  Add to cart