100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Machine Learning (Data Mining) - Samenvatting (slides en handboek) $9.50
Add to cart

Summary

Machine Learning (Data Mining) - Samenvatting (slides en handboek)

 182 views  13 purchases
  • Course
  • Institution
  • Book

Summary study book Data Science for Business of Foster Provost, Tom Fawcett - ISBN: 9781449361327, Edition: 1, Year of publication: -

Preview 4 out of 129  pages

  • No
  • Unknown
  • October 2, 2023
  • 129
  • 2022/2023
  • Summary
avatar-seller
Data Mining




1

,Inhoudstafel:
0. General Introduction...............................................................................................................................................7
1. Introduction: Data-Analytic Thinking.....................................................................................................................14
1.1 The Ubiquity of Data Opportunities................................................................................................................14
1.2 Example: Hurricane Frances............................................................................................................................15
1.3 Example: Predicting Customer Churn..............................................................................................................15
1.4 Data Science, Engineering and Data-Driven Decision Making.........................................................................16
1.5 Data Processing and ‘Big Data’.......................................................................................................................17
1.6 From Big Data 1.0 to Big Data 2.0...................................................................................................................17
1.7 Data and Data Science Capability as a Strategic Asset....................................................................................18
1.8 Data-Analytic Thinking....................................................................................................................................19
1.9 This Book........................................................................................................................................................19
1.10 Data Mining and Data Science, Revisited (fundamental concepts)................................................................20
1.11 Chemistry Is Not About Test Tubes: Data Science Versus the Work of the Data Scientist.............................20
1.12 Summary........................................................................................................................................................20
2. Business Problems and Data Science Solutions.....................................................................................................21
2.1 From Business Problems to Data Mining Tasks................................................................................................21
2.2 Supervised Versus Unsupervised Methods......................................................................................................23
2.3 Data Mining and Its Results.............................................................................................................................24
2.4 The Data Mining Process.................................................................................................................................25
2.4.1 Business Understanding...............................................................................................................................25
2.4.2 Data Understanding......................................................................................................................................26
2.4.3 Data Preparation..........................................................................................................................................26
2.4.4 Modeling.......................................................................................................................................................26
2.4.5 Evaluation.....................................................................................................................................................27
2.4.6 Deployment..................................................................................................................................................27
2.5 Implications for Managing the Data Science Team..........................................................................................28
2.6 Other Analytics Techniques and Technologies................................................................................................28
2.6.1 Statistics........................................................................................................................................................28
2.6.2 Database Querying.......................................................................................................................................28
2.6.3 Data Warehousing........................................................................................................................................29
2.6.4 Regression Analysis.......................................................................................................................................29
2.6.5 Machine Learning and Data Mining..............................................................................................................29
2.6.6 Answering Business Questions with These Techniques................................................................................30
2.7 Summary..........................................................................................................................................................30
3. Introduction to Predictive Modeling: From Correlation to Supervised Segmentation...........................................31
3.1 Models, Induction, Deduction.........................................................................................................................31

2

, 3.2 Supervised Segmentation................................................................................................................................33
3.2.1 Selecting Informative Attributes...................................................................................................................34
3.2.2 Example: Attribute Selection with Information Gain (lezen)........................................................................37
3.2.3 Supervised Segmentation with Tree-Structured Models..............................................................................38
3.3 Visualizing Segmentations...............................................................................................................................39
3.4 Trees as Sets of Rules.......................................................................................................................................40
3.5 Probability Estimation......................................................................................................................................41
3.6 Example: Addressing the Churn Problem with Tree Induction (lezen).............................................................41
3.7 Summary..........................................................................................................................................................41
4. Fitting a Model to Data..........................................................................................................................................42
4.1 Classfication via Mathematical Functions........................................................................................................43
4.1.1 Linear Discriminant Functions.......................................................................................................................45
4.1.2 Optimizing an Objective Function.................................................................................................................47
4.1.3 An Example of Mining a Linear Discriminant from Data (lezen)...................................................................47
4.1.4 Linear Discriminant Functions for Scoring and Ranking Instances................................................................48
4.1.5 Support Vector Machines, Briefly.................................................................................................................48
4.2 Regression via Mathematical Functions..........................................................................................................49
4.3 Class Probability Estimation and Logistic “Regression”....................................................................................49
4.3.1 Logistic Regression: Some Technical Details (lezen).....................................................................................50
4.4 Example: Logistic Regression versus Tree Induction (lezen)............................................................................50
4.5 Nonlinear Functions, Support Vector Machines, and Neural Networks..........................................................51
4.6 Summary..........................................................................................................................................................52
5. Overfitting and Its Avoidance................................................................................................................................53
5.1 Generalization.................................................................................................................................................53
5.2 Overfitting........................................................................................................................................................53
5.3 Overfitting Examined.......................................................................................................................................54
5.3.1 Holdout Data and Fitting Graphs..................................................................................................................54
5.3.2 Overfitting in Tree Induction.........................................................................................................................56
5.3.3 Overfitting in Mathematical Functions.........................................................................................................57
5.4 Example: Overfitting Linear Functions (lezen).................................................................................................57
5.5 Example: Why Is Overfitting Bad? (lezen)........................................................................................................58
5.6 From Holdout Evaluation to Cross-Validation..................................................................................................59
5.7 Example: The Churn Dataset Revisited (lezen)................................................................................................60
5.8 Learning Curves...............................................................................................................................................61
5.9 Overfitting Avoidance and Complexity Control................................................................................................62
5.9.1 Avoiding Overfitting with Tree Induction......................................................................................................62
5.9.2 A General Method for Avoiding Overfitting..................................................................................................62
5.9.3 Avoiding Overfitting for Parameter Optimization (lezen).............................................................................63

3

, 5.10 Summary........................................................................................................................................................63
6. Similarity, Neighbors, and Clusters........................................................................................................................64
6.1 Similarity and Distance....................................................................................................................................64
6.2 Nearest-Neighbor Reasoning...........................................................................................................................65
6.2.1 Example: Whiskey Analytics (lezen)..............................................................................................................65
6.3 Nearest Neighbors for Predictive Modeling.....................................................................................................66
6.3.1 How Many Neighbors and How Much Influence?........................................................................................67
6.3.2 Geometric Interpretation, Overfitting, and Complexity Control...................................................................68
6.3.3 Issues with Nearest-Neighbor Methods.......................................................................................................69
6.4 Some Important Technical Details Relating to Similarities and Neighbors......................................................70
6.4.1 Heterogeneous Attributes............................................................................................................................70
6.4.2 Other Distance Functions (lezen)..................................................................................................................70
6.4.3 Combining Functions: Calculating Scores from Neighbors (lezen)................................................................70
6.5 Clustering.........................................................................................................................................................71
6.5.1 Example: Whiskey Analytics Revisited (lezen)..............................................................................................71
6.5.2 Hierarchical Clustering..................................................................................................................................71
6.5.3 Nearest Neighbors Revisited: Clustering Around Centroids.........................................................................73
6.5.4 Example: Clustering Business News Stories (lezen)......................................................................................75
6.5.5 Understanding the Results of Clustering......................................................................................................75
6.5.6 Using Supervised Learning to Generate Cluster Descriptions (lezen)...........................................................76
6.6 Stepping Back: Solving a Business Problem Versus Data Exploration..............................................................77
6.7 Summary..........................................................................................................................................................77
7. Decision Analytic Thinking I: What Is a Good Model?............................................................................................78
7.1 Evaluating Classifiers.......................................................................................................................................78
7.1.1 Plain Accuracy and Its Problems...................................................................................................................78
7.1.2 The Confusion Matrix...................................................................................................................................79
7.1.3 Problems with Unbalanced Classes..............................................................................................................80
7.1.4 Problems with Unequal Costs and Benefits..................................................................................................81
7.1.5 Generalizing Beyond Classification...............................................................................................................81
7.2 A Key Analytical Framework: Expected Value..................................................................................................81
7.2.1 Using Expected Value to Frame Classifier Use..............................................................................................82
7.2.2 Using Expected Value to Frame Classifier Evaluation...................................................................................82
7.3 Evaluation, Baseline Performance, and Implications for Investments in Data.................................................84
7.4 Summary..........................................................................................................................................................85
8. Visualizing Model Performance.............................................................................................................................86
8.1 Ranking Instead of Classifying..........................................................................................................................86
8.2 Profit Curves....................................................................................................................................................87
8.3 ROC Graphs and Curves...................................................................................................................................88

4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller studentua2001. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.50. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$9.50  13x  sold
  • (0)
Add to cart
Added