100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Fundamentals of Calculus 1/ Chapters 1-217/ All Chapters $25.99   Add to cart

Exam (elaborations)

Fundamentals of Calculus 1/ Chapters 1-217/ All Chapters

 0 view  0 purchase
  • Course
  • MATHEMATICA CALCULUS
  • Institution
  • MATHEMATICA CALCULUS

Fundamentals of Calculus 1/ Chapters 1-217/ All Chapters

Preview 10 out of 242  pages

  • February 18, 2024
  • 242
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
  • calculus
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • MATHEMATICA CALCULUS
  • MATHEMATICA CALCULUS
avatar-seller
TUTORSFLIX
TEST BANK
FUNDAMENTALS OF CALCULUS 1/Chapter 1-217/ Full
Book

,Table of Contents
1.1 Functions ........................................ 2
1.2 Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Solving Trig Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Solving Trig Equations with Calculators, Part I . . . . . . . . . . . . . . . . . . .
.8
1.6 Solving Trig Equations with Calculators, Part II ..............
..... 9
1.7 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Logarithm Functions .................................. 11
1.9 Exponential And Logarithm Equations . . . . . . . . . . . . . . . . . . 12
1.10 Common Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Limits 15
2.1 Tangent Lines And Rates Of Change . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 One-Sided Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Limit Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Computing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Infinite Limits ...................................... 28
2.7 Limits at Infinity, Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Limits at Infinity, Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10 The Definition of the Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Derivatives 35
3.1 The Definition of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Interpretation of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Product and Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Derivatives of Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

,3.6 Derivatives of Exponentials & Logarithms . . . . . . . . . . . . . . . . . . 45

,3.7 Derivatives of Inverse Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Derivatives of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . .47
3.9 Chain Rule ....................................... 48
3.10 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.11 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.12 Higher Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.13 Logarithmic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Derivative Applications 56
4.1 Rates of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.2 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Finding Absolute Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4.5 The Shape of a Graph, Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 The Shape of a Graph, Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 More Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10 L’Hospital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
4.11 Linear Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.12 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.13 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.14 Business Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Integrals 77
5.1 Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Computing Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Substitution Rule for Indefinite Integrals . . . . . . . . . . . . . . . . . . 81
5.4 More Substitution Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Area Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Definition of the Definite Integral . . . . . . . . . . . . . . . . . . . . . . . .85

,5.7 Computing Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 Substitution Rule for Definite Integrals . . . . . . . . . . . . . . . . . . 89
6 Applications of Integrals 90
6.1 Average Function Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
6.2 Area Between Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Volume with Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Volume with Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5 More Volume Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……….97
7 Integration Techniques 98
7.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101


7.2 Integrals Involving Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Trig Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
7.4 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
7.5 Integrals Involving Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
7.6 Integrals Involving Quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
7.7 Integration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
7.8 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
7.9 Comparison Test for Improper Integrals . . . . . . . . . . . . . . . . . 109
7.10 Approximating Definite Integrals . . . . . . . . . . . . . . . . . . . . . . .110
8 More Applications of Integrals 111
8.1 Arc Length ....................................... 112
8.2 Surface Area ...................................... 113
8.3 Center Of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4 Hydrostatic Pressure and Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9 Parametric and Polar 118
9.1 Parametric Equations and Curves .........................
.119
9.2 Tangents with Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . 121

,9.3 Area with Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.4 Arc Length with Parametric Equations . . . . . . . . . . . . . . . . . . 123
9.5 Surface Area with Parametric Equations . . . . . . . . . . . . . . . . . . . . . .124
9.6 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
9.7 Tangents with Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 127
9.8 Area with Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
9.9 Arc Length with Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 129
9.10 Surface Area with Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . .130
9.11 Arc Length and Surface Area Revisited . . . . . . . . . . . . . . . . . . . . . . .131
10 Series and Sequences 132
10.1 Sequences ....................................... 133
10.2 More on Sequences .................................. 134
10.3 Series - Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.4 Convergence/Divergence of Series . . . . . . . . . . . . . . . . . . . . . . . . . .136
10.5 Special Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.6 Integral Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.7 Comparison & Limit Comparison Test . . . . . . . . . . . . . . . . . . . . . . . .139
10.8 Alternating Series Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.9 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.10 Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.11 Root Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.12 Strategy for Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.13 Estimating the Value of a Series . . . . . . . . . . . . . . . . . . . . . . . . . . . .145


10.14 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.15 Power Series and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.16 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.17 Applications of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.18 Binomial Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11 Vectors 151

,11.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.2 Vector Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
11.3 Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.4 Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12 3D Space 156
12.1 The 3-D Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.2 Equations of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.3 Equations of Planes .................................. 159
12.4 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.5 Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . 161
12.6 Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
12.7 Calculus with Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . 163
12.8 Tangent, Normal and Binormal Vectors . . . . . . . . . . . . . . . . . . . . . . 164
12.9 Arc Length with Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.10 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.11 Velocity and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.12 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.13 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
13 Partial Derivatives 170
13.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.2 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.3 Interpretations of Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 173
13.4 Higher Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.5 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.6 Chain Rule ....................................... 176
13.7 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14 Applications of Partial Derivatives 179
14.1 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
14.2 Gradient Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.3 Relative Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

,14.4 Relative Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
14.5 Lagrange Multipliers .................................. 184
15 Multiple Integrals 185
15.1 Double Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186


15.2 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
15.3 Double Integrals over General Regions ....................
.188
15.4 Double Integrals in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 190
15.5 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.6 Triple Integrals in Cylindrical Coordinates ....................
.192
15.7 Triple Integrals in Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . .
.193
15.8 Change of Variables .................................. 194
15.9 Surface Area ...................................... 195
15.10 Area and Volume Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
16 Line Integrals 197
16.1 Vector Fields ...................................... 198
16.2 Line Integrals - Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
16.3 Line Integrals - Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
16.4 Line Integrals of Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16.5 Fundamental Theorem for Line Integrals . . . . . . . . . . . . . . . . . . . . . .206
16.6 Conservative Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
16.7 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
17 Surface Integrals 210
17.1 Curl and Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
17.2 Parametric Surfaces .................................. 212
17.3 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17.4 Surface Integrals of Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . .214
17.5 Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

,17.6 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Index 218

,

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller TUTORSFLIX. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $25.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

85169 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$25.99
  • (0)
  Add to cart