100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Lineaire Algebra - Hfst 11 Orthogonaliteit $3.25   Add to cart

Summary

Samenvatting Lineaire Algebra - Hfst 11 Orthogonaliteit

 15 views  0 purchase
  • Course
  • Institution

Hfst 11: Orthogonaliteit gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!

Last document update: 4 months ago

Preview 1 out of 2  pages

  • May 17, 2024
  • July 10, 2024
  • 2
  • 2023/2024
  • Summary
avatar-seller
Hoofdstuk 11
Orthogonaliteit


Het scalair product
⃗ = 𝒖
⃗ ∙ 𝒗
𝒖 ⃗ 1+…+𝒖
⃗ 1𝒗 ⃗ n = scalair
⃗ n𝒗

Eigenschappen:

⃗ ∙ 𝑣=𝑣 ∙ 𝑢
 𝑢 ⃗
 (𝑢
⃗ + 𝑣) ∙ 𝑤 ⃗⃗ = 𝑢 ⃗ ∙ 𝑤
⃗⃗ + 𝑣 ∙ 𝑤
⃗⃗ )
⃗ ) ∙ 𝑣 = 𝑐(𝑢
 (𝑐𝑢 ⃗ ∙ 𝑣)
 𝑢
⃗ ∙ 𝑢⃗ ≥ 0 en 𝑢 ⃗ ∙ 𝑢⃗ =0𝑢 ⃗ = 0 ⃗

2
De norm of lengte van 𝒗
⃗ → ||𝒗
⃗ || = √𝒗 ⃗ = √𝑣
⃗ ∙ 𝒗 ⃗⃗⃗⃗1 + ⋯ + ⃗⃗⃗⃗⃗
𝑣𝑚 ² en ||𝒗
⃗ ||² = 𝒗
⃗ ∙ 𝒗




Eenheidsvector van 𝒗 ̂ = 𝒗⃗ → de norm van deze vector = 1, ligt in dezelfde richting als 𝒗
⃗ → ⃗𝒗 ⃗
⃗ ||
||𝒗




Afstand tussen twee vectoren → d(𝒖 ⃗ ) = ||𝒖
⃗ ,𝒗 ⃗ || = euclidische afstand
⃗ −𝒗



⃗ = ||𝒖
⃗ ∙ 𝒗
𝒖 ⃗ || ∙ ||𝒗
⃗ || cos(θ) = 𝒖
⃗ 𝑻𝒗
⃗ (zodat u een 1xn matrix wordt, v een nx1)
⃗ ∙𝒗
𝒖 ⃗
 cos(θ) = ⃗ || ∙ ||𝒗
⃗ ||
= de cosinus-similariteit (similariteit tussen twee vectoren)
||𝒖



Welke vectoren hebben de grootste cosinus-similariteit?

 Bereken de norm van alle vectoren
 Vul ze in bovenstaande formule in
 Hoogste getal heeft het meest gemeenschappelijk
 1 = alles gemeenschappelijk (getal van 0 – 1)


Orthogonaliteit:

2 vectoren 𝒖 ⃗ zijn orthogonaal (loodrecht) als 𝒖
⃗ 𝐞𝐧 𝒗 ⃗ =0
⃗ ∙ 𝒗


Orthogonale = lineair onafhankelijke verzameling

Een verzameling S = {𝒗
⃗ 1, …, 𝒗
⃗ n} is orthogonaal als elk paar van vectoren uit de verzameling orthogonaal is

 Indien S een orthogonale verzameling is, is S lineair onafhankelijk
 Voor alle 𝑣 i en 𝑣 j in S testen of ze orthogonaal zijn 𝑣 ⃗⃗⃗ j = ⃗0 voor i ≠ j
⃗⃗⃗ i . 𝑣


Orthonormaal = ortogonale lineair onafhankelijke verzameling met eenheidsvectoren

Een verzameling S = {𝒗
⃗ 1, …, 𝒗
⃗ n} is orthonormaal, als ze orthogonaal is en de vectoren eenheidsvectoren
zijn (norm 1 hebben), dus de vectoren zijn orthogonaal en genormeerd = orthonormaal

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller BioIngenieur. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.25. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

62555 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.25
  • (0)
  Add to cart