ESTADÍSTICA II
DISTRIBUCIONES DE PROBABILIDAD CONTRASTE DE HIPOTESIS NO PARAMETRICOS
Distribución discreta MEDIA MUESTRAL CONTRASTE DE BONDAD DEL AJUSTE
∑ %" (# Prueba CHI-CUADRADO
!! = # = ∑ %" &" !# = ∑ %"# &" ( # = !# − !!# %̅ = B(%̅ ) = # C(%̅ ) = 8 #
Región Crítica / > V8&9&!;
1 1 (T" − B" )# ;
N (#,() para ( # conocida N N(#,() para ( # desconocida /=S k: numero de clases
Distribución continua B" r: parámetros estimados
!
( %̅ − # T" : Frecuencia Observada
$% $% %̅ ~F(#, ) %̅ ~ ~ I'&!
!! = # = ∫&% %. ,(%)/% # ( # = !# − !!# √1 81 /√1 B" : Frecuencia esperada
!# = 0 % . ,(%)/%
&%
B" = 1. &"
VARIANZA MUESTRAL KOLMOGOROV-SMIRNOV
Binomial (n,p) / = max { [6<* − 6(%" )[ , [6<*&+ − 6(%" )[ }
'! ∑(J" − JK)# ∑ %"#
# = 1& ( # = 1&2 3(4 = %" ) = . & ) . 2 '&) A# = A# = − %̅ # 6(%" ): Función de distribución presentada por la hipótesis
)!('&))! 1 1 F"
%! W W
6<* =
1
F" : Frencuencia acumulada
Poisson ~ (XYV Región Crítica / > e';;
&W
, &' ..(
#=5 (# = 5 3(4 = %" ) = 6(%) = 3(4 ≤ %) SHAPIRO-WILK
)! PROPORCIÓN MUESTRAL 3)
? = ∑ >" [ %'&"$! − %" ] h = ∑()* &)̅ ))
Región de Aceptación w >h;
Normal – N(#, ()
&. 2
&̂ ~F(&, M )
1 &
()&0)) 1 CONTRASTE DE INDEPENDENCIA
,(%) = .= #1)
Tabla de contingencias
(√2<
i! i? i9 1" 1" . 1?
Uniforme – U(>, ?) DIFERENCIAS MEDIAS MUESTRALES, POBLACIONES B"? =
j! T!! T!? T!9 1! 1
NORMALES 8
PT"? − B"? R
#
2$3 (3&2)) ! )&2 j" T"! T"? T"9 1"
#= (# = ,(%) = ><%<? 6(%) = /=S
# !# 3&2 3&2 j8 T8! T8? T89 18 B"?
( # conocida ( # desconocida pero iguales !
1? 1! 1? 19 n Región Crítica
'23 '25
(%̅ − N,) − (#6 − #7 ) #
CUASIVARIANZA MUESTRAL (%̅ − NK)~F(#) − #5 , O ~77+9−2 / > V(8&!).(9&!;)
+ ) ;
/ C 1 1
1 2( 4 8∗ #. + /
A!# = A# B(A!# ) =( #
C(A!#) =
1−1 n−1 / C ESTIMACIÓN PUNTUAL
Insesgo Eficiencia Consistencia
CUASIDESVIACIÓN MUESTRAL DIFERENCIAS MEDIAS MUESTRALES, POBLACIONES B(kl ) = k V (kl! ) ≤ V (kl# ) lim BPklR = k
'→%
1 NO NORMALES m=mnoPkl R = BPklR − k lim CPkl R = 0
!V = # ! '→%
1−1 (%̅ − N,) − (#6 − #7 )
~Z(0,1) # !
(1 − D) (Nivel de confianza) M = E(FGH:7IJ !! / !! NIOPI)
2
P213 P15 BrsPkl R = CPkl R + uBPkl R − k v CCR=
# + ^ _` a(b;d) e
E(FGH:7IJ !! /!! GLHJ7I) Error Tipo II / C "#$ % &
^d
D = E(JHGℎIRIJ !! /!! GLHJ7I) (1 − M) (Potencia del contraste)
Error Tipo I ESTIMADOR MÁXIMA VEROMILITUD
E(SHGℎIRIJ !! / !! NIOPI)
DIFERENCIA DE PROPORCIONES
L(X,f)=f(J! , k) … N(J' , k)
CUANTILES N(0,1) Bernoulli X ~ B (1,p) &̂ =%̅ log(I. k) = log(I) + log(k)
&! 2! &# 2# I
P0
Q −0
Q R~F(&! − &# , M + ) #̂ =%̅ log l m = log(I) − log(k)
1 2 Normal X ~ N(7, 9) ∑, ) k
P(Z<a) 1/10 1/8 1/6 1/5 1/4 3/10 1/3 3/8 2/5 / C *-+()* &)̅ )
( #A = log( I; ) = k. log(I)
a -1,28 -1,15 -0,97 -0,84 -0,67 -0,52 -0,43 -0,32 -0,25 '
n<
Poisson X ~ P(:) 5w = %̅ N(+) = log(n) N < (+) =
n
Academia Atica – Academia Nº1 de la URJC – www.academia-atica.com
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller edithcoll. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $10.18. You're not tied to anything after your purchase.