Inhoud
Inferential statistics Test 2 micro lecture summaries .............................................................................. 3
550: Multiple regression addition ....................................................................................................... 3
The effect of a dummy and ratio on a scale variable....................................................................... 3
The effect of two ratio on another scale variable ........................................................................... 4
Studying residuals in a multivariate context ................................................................................... 5
In R ................................................................................................................................................... 6
553 Multiple regression interaction: ................................................................................................... 7
Interaction with a dummy ............................................................................................................... 7
Interaction/moderation with a nominal variable ............................................................................ 8
Interaction/moderation in R ............................................................................................................ 9
554: multiple regression non linearity .............................................................................................. 11
Introducing non linearity ............................................................................................................... 11
Theorising about non-linearity ...................................................................................................... 12
Non linearity in R ........................................................................................................................... 14
560: non normality of residuals and omitted variables..................................................................... 16
A general introduction and overview ............................................................................................ 16
About interpreting QQ plots .......................................................................................................... 17
Testing for normality (Shapiro-wilk test) ....................................................................................... 18
Transforming the y variable ........................................................................................................... 19
Checking and fixing normality in R ................................................................................................ 19
561: heteroscedasticity, non-equal variances and interaction effects .............................................. 21
What is homogeneity of errors? .................................................................................................... 21
Testing whether errors are heterogeneous ................................................................................... 22
Studying homogeneity in R............................................................................................................ 23
563: dealing with outliers, influential cases and multicollinearity .................................................... 24
A general introduction to leverage, outliers, influential cases and Cook’s distance ..................... 24
Finding special cases in your data set by using R .......................................................................... 26
Multi Collinearity ........................................................................................................................... 27
Detecting Multicollinearity ............................................................................................................ 28
510: a non-parametric alternative for means testing: Wilcoxon signed-rank test ............................ 29
Including non-parametric tests ..................................................................................................... 29
Ranks and signed ranks ................................................................................................................. 30
Wilcoxon signed-rank test ............................................................................................................. 30
Wilcoxon in R ................................................................................................................................. 31
,545: a non-parametric alternative for testing the effect of dummy or nominal variables ............... 32
Introducing the Mann Whitney Wilcoxon test .............................................................................. 32
The MWW test in R ....................................................................................................................... 34
Introducing the Kruskal Wallis test ................................................................................................ 35
The Kruskal Wallis test in R ............................................................................................................ 37
580: selecting a sufficient number of cases ...................................................................................... 38
Selecting a sample size .................................................................................................................. 38
Type I and type II error .................................................................................................................. 39
Power analysis ............................................................................................................................... 40
590: choosing between statistical tests – a general overview .......................................................... 42
An overview of statistical test........................................................................................................ 42
,Inferential statistics Test 2 micro lecture summaries
550: Multiple regression addition
The effect of a dummy and ratio on a scale variable
To know whether the error is normally distributed you look at the residuals, they should be normal
and equal across the line and between the groups. If they are not we need to adjust the way we
estimate these relationships.
, the first R-squared and F-test
then b-coefficients and the t-test
The effect of two ratio on another scale variable
If you see an N =… in a table of a study, this means it studies this number of papers, its not the
number of individuals.
We need to check the residuals, but this now becomes less easy using visual inspection. We need to
check the normality and equal variance of the residuals but we cannot simply do this by looking at
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Kimxx. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.71. You're not tied to anything after your purchase.