100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
COURSE MODULES IN MATH 27 (ANALYTIC GEOMETRY AND CALCULUS II) MODULE 2 TECHNIQUES OF INTEGRATION $12.99   Add to cart

Exam (elaborations)

COURSE MODULES IN MATH 27 (ANALYTIC GEOMETRY AND CALCULUS II) MODULE 2 TECHNIQUES OF INTEGRATION

 12 views  0 purchase
  • Course
  • ANALYTIC GEOMETRY AND CALCULUS II
  • Institution
  • ANALYTIC GEOMETRY AND CALCULUS II

COURSE MODULES IN MATH 27 (ANALYTIC GEOMETRY AND CALCULUS II) MODULE 2 TECHNIQUES OF INTEGRATION

Preview 3 out of 26  pages

  • August 31, 2024
  • 26
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • course modules in math 27
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • ANALYTIC GEOMETRY AND CALCULUS II
  • ANALYTIC GEOMETRY AND CALCULUS II
avatar-seller
Ascorers
COURSE MODULES in
V V



MATH 27
V V



(Analytic Geometry and Calculus II)
V V V V




MODULE 2 V




TECHNIQUES OF INTEGRATION
V V




Lynie B. Dimasuay
V V



Author




Ben Paul B. Dela Cruz
V V V V


John Mark T. V V V


Lampos Arniel E.
V V V


Roxas V


Editors




Ariel L. Babierra V V


Wielson M. V V


Factolerin Gimelle B.
V V V


Gamilla Pierre
V V


Lance A. Tan V V V


Contributors

,UNITV2. V TECHNIQUESVOFVINTEGRATION

This Vunit Vwill Vfocus Von Vthe Vdifferent Vtechniques Vof Vintegration. V Some Vintegrand Vrequires Va
Vspecific Vapproach Vto Vbe Vable Vto Vevaluate Vthem. V So Vyou Vneed Vto V pay Vattention Vto Vthe Vgiven
Vintegrand Vso Vthat Vyou Vwill Vknow Vwhat Vtechniques Vto Vbe Vused. V But Vthis Vdoes Vnot Vmean Vthat Vthe

Vsimple Vsubstitution Vtechnique Vthat Vyou Vlearned Vin Vthe Vprevious Vunit Vwill Vno Vlonger Vwork Vhere. V In

Vfact, Vthat Vwill Valways Vbe Vyour Vfirst Voption Vbefore Vapplying Vthe Vother Vtechniques.



Our Vgoals Vfor Vthis Vunit Vare Vas Vfollows. V By Vthe Vend Vof Vthe Vunit Vyou Vshould Vbe Vable Vto

 perform Vintegration Vby Vparts;
 use Vtrigonometric Vsubstitution Vto Vevaluate Vsome Vintegral Vforms;
 decompose Vrational Vfunctions Vto Vpartial Vfractions;
 use Vproper Vsubstitute Vto Vevaluate Vsome Vintegral Vforms;
 determine Vwhether Van Vimproper Vintegral Vis Vconvergent Vor Vdivergent; Vand
 execute Vthe Vproper Vtechnique Vin Vevaluating Vintegrals.


REMINDER: V REVIEW Von Vintegral Vforms Vin VUNIT V1. VThese Vwill Vbe Vthe Vbasis Vof Vthe Vother Vsolvable
Vintegral Vforms Vin Vthis Vunit. VAlso, Vreview Vthe Vderivatives Vfor Vsolving Vdifferentials Vin Vcase Vsubstitution

Vwill Vbe Vused Vin Vsolving Vintegrals.



2.1 Integration Vby VParts

In Vthis Vsection, Vwe Vwill Vstudy Vone Vof Vthe Vmost Vimportant Vtechniques Vof Vintegration Vcalled
Vintegration Vby Vparts. VThis Vtechnique Vis Vapplicable Vto Vthe Vintegrand Vinvolving Vproducts Vof Valgebraic
Vand Vtranscendental Vfunctions Vor Vin Vsome Vcases, Vwhen Vthe Vintegrand Vis Va Vproduct Vof Vtranscendental

Vfunctions.

Here Vis Vthe Vforulation:

Let V u V and V v V be Vfunctions Vof V x V. VRecall Vthe Vproduct Vrule Vfor Vdifferentiation,

Dx VVuVVv V uVVDx VVv V vVVDx VVu VV, Vequivalently Vit Vcan Vbe Vexpresses Vas
V V



dVuVVv V uV  vVVdu V. V Taking Vthe Vintegrals Vof Vboth Vside, Vyields
V Vdv





 d VuVVv V V  V
 u 
 v VVdu

 dv
VV




 uVVv V  V
 u VVdv V  V
 v VVdu


 u VVdv V  V u V
 v VVdu

v
V V 

MUST VREMEMBER!!! VIntegration Vby Vparts V(IBP).


An Vintegral Vform V
 f VxVdx V can Vbe Vexpressed Vas V
 u VVdv V which Vis, Vin Vturn, Vequal Vto
MATH V27 V Lecture VGuide VUNIT V2




V





uVVv V V v VVdu V.
Once V u V and V dv V are Vdetermined, Vsolve V du V from V u V, Vand V dv Vfrom V v V. VThen, Vsolve Vthe
Vresulting Vform.
V(IMSP,UPLB)




 
f V x dx
V
V  V V
 u VVdv V 

uVVv V V v VVdu


2

, Some Vhelpful Vtips:
1. Try Vto Vlet V Vbe Va Vfunction Vwhose Vderivative Vis Va Vfunction Vsimpler Vthan V VThen V Vwill Vbe Vthe
Vremaining Vfactors Vof Vthe Vintegrand. VNote Vthat V V will Valways Vinclude Vthe V Vof Vthe Voriginal

Vintegrand.

2. Try Vto Vlet V V be Vthe Vmost Vcomplicated Vportion Vof Vthe Vintegrand Vthat Vfits Va Vbasic Vintegration
Vrule. VThen Vyour V Vwill Vbe Vthe Vremaining Vfactor(s) Vof Vthe Vintegrand.





Illustration V1. VUse VIBP Vto Vevaluate V x VcosVxdx V.
Solution:
Since V the V derivative V of V V will V result V to V a V simple V expression, V we V can V choose V V =V
V and V V=

��� V� V�� V so Vthat V�� V = V �� V and V� V = V ∫ V�� V = V ∫ V��� V� V�� V = V ��� V�.

Thus,


 x cos xdx xxsinsin xx  (cos
V V V V


V V
sin xdx
V V


x)  C
V
V


V
V


V
V


V V V


 VxVsin Vx V Vcos Vx V VC

Verify Vthat Vthe Vanswer Vis Vcorrect Vby Vshowing Vthat V ( V V V +V V + V ) V= V
V V V .





Illustration V2. VUse VIBP Vto Vevaluate V Arcsin Vxdx V.
Solution:
Note V that V our V only V choice V for V V here V is V V V and V V =V . V Thus, and V � V = V ∫ V��
√�−��
V V= V=


∫ V�� V = V �.
Thus,
dx

Show Vthat
 Arcsin Vxdx V VxVArcsin Vx V 1V
Vx
2


x. ∫�.
V

V
V
V
= V−√� V− V�� V+
√� V− V��




Therefore,
∫ V������ V� V �� V = V � V������ V� V+ V√� V− V�� V + V�.
MATH V27 V Lecture VGuide VUNIT V2




Verify Vthat Vthe Vanswer Vis Vcorrect Vby Vshowing Vthat V��(� V������ V� V+ V√� V− V�� V + V�) V =
V ������ V�.
V(IMSP,UPLB)




3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Ascorers. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $12.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$12.99
  • (0)
  Add to cart