100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12 $18.09   Add to cart

Exam (elaborations)

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

 1 view  0 purchase
  • Course
  • Game Theory Basics 1st Edition By Bernhard von St
  • Institution
  • Game Theory Basics 1st Edition By Bernhard Von St

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Preview 4 out of 69  pages

  • September 17, 2024
  • 69
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • Game Theory Basics 1st Edition By Bernhard von St
  • Game Theory Basics 1st Edition By Bernhard von St
avatar-seller
Futurenurses
SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS m m m




1 - Nim and Combinatorial Games
m m m m m




2 - Congestion Games
m m m




3 - Games in Strategic Form
m m m m m




4 - Game Trees with Perfect Information
m m m m m m




5 - Expected Utility
m m m




6 - Mixed Equilibrium
m m m




7 - Brouwer’s Fixed-Point Theorem
m m m m




8 - Zero-Sum Games
m m m




9 - Geometry of Equilibria in Bimatrix Games
m m m m m m m




10 - Game Trees with Imperfect Information
m m m m m m




11 - Bargaining
m m




12 - Correlated Equilibrium
m m m




2

,Game Theory Basics
m m




Solutions to Exercises
m m



©m BernhardmvonmStengelm2022

SolutionmtomExercisem1.1

(a) Letm≤mbemdefinedmbym(1.7).m Tomshowmthatm≤mismtransitive,mconsidermx,my,mzmwithmxm ≤mymandmym≤mz.mIf
mxm=mymthenmxm≤mz,mandmifmym=mzmthenmalsomxm≤mz.mSomthemonlymcasemleftmismxm<mymandm ym <m z,mwhic

hmimpliesmxm <m zmbecausem<mismtransitive,mandmhencemxm ≤mz.
Clearly,m≤mismreflexivembecausemxm=mxmandmthereforemxm≤mx.
Tomshowmthatmmmmm
≤ ismantisymmetric,mconsidermxmandmymwithmxmmmmmym≤andmymmmmmx.m≤Ifmwemhadmxm≠my
mthenmxm<mymandmym<mx,mandmbymtransitivitymxm<mxmwhichmcontradictsm(1.38).mHencemxm =m y,masmre

quired.m Thismshowsmthatm≤mismampartialmorder.
Finally,mwemshowm(1.6),msomwemhavemtomshowmthatmxm<mymimpliesmxmmmymand≤ mxm≠mymandmvicemversa

.mLetmxm<my,mwhichmimpliesmxmymbym(1.7).mIfmwem≤ hadmxm=mymthenmxm<mx,mcontradictingm(1.38),msomw
emalsomhavemxm≠my.m Conversely,mxmmm ymandmxm≠mymimplymbym(1.7)mxm <≤m ymorm xm =m ymwheremthemsecond
mcasemismexcluded,mhencem xm <m y,masmrequired.


(b) Considermampartialmordermand ≤massumem(1.6)masmamdefinitionmofm<.mTomshowmthatm<mismtransitiv
e,msupposemxm<my,mthatmis,mxmymandmxm≠my,≤mandmym<mz,mthatmis,mymzmandmym≠mz.mBecausemmmmismtransit

ive,mxmmmmz.≤
mIfmwemhadmxm=mzmthenmxmmmmmymandmymmmmmxmandmhencemxm=mymbymantisymmetrymofmmmm,m
≤ ≤ ≤
whichmcontradictsm xm ≠m y,msomwemhavem xmmmmzmandm xm ≠m z,mthatmis,mxm <m zmbym(1.6),masmrequired.
≤ ≤
Also,m<mismirreflexive,mbecausemxm<mxmwouldmbymdefinitionmmeanmxmmmxmandm≤xm≠mx,mbutmthemlatter
mismnotmtrue.


Finally,mwemshowm(1.7),msomwemhavemtomshowmthatmxm ≤mymimpliesmxm<mymormxm=mymandmvicemversa,
mgivenmthatm<mismdefinedmbym(1.6).mLetmxm≤my.mThenmifmxm=my,mwemaremdone,motherwisemxm≠mymand
mthenmbymdefinitionmxm<my.mHence,mxm≤mymimpliesmxm<mymormxm=my.mConversely,msupposemxm <m ymor

mxm=my.m Ifmxm <m ymthenmxm ≤mymbym(1.6),mandmifmxm=mymthenmxm ≤m ymbecausem ≤mismreflexive.m Thismco

mpletesmthemproof.

SolutionmtomExercisem1.2

(a) Inm analysingm them gamesm ofm threem Nimm heapsm wherem onem heapm hasm sizem one,m wem firstm lookmatmso
memexamples,mandmthenmusemmathematicalminductionmtomprovemwhatmwemconjecturemtombemthemlosin
gmpositions.mAmlosingmpositionmismonemwheremeverymmovemismtomamwinningmposition,mbecausemth
enmthemopponentmwillmwin.m Thempointmofmthismexercisemismtomformulatemamprecisemstatementmtomb
emproved,mandmthenmtomprovemit.
First,mifmtheremaremonlymtwomheapsmrecallmthatmtheymaremlosingmifmandmonlymifmthemheapsmaremof
mequalmsize.m Ifmtheymaremofmunequalmsize,mthenmthemwinningmmovemismtomreducemthem largermheap
msomthatmbothmheapsmhavemequalmsize.




3

, Considermthreemheapsmofmsizesm1,mm,mn,mwherem1mmmmmm≤mmmmmn. ≤mWemobservemthemfollowing:m1,m1,m
mmismwinning,mbymmovingmtom1,m1,m0.mSimilarly,m1,mm,mmmismwinning,mbymmovingmtom0,mm,mm.mN
ext,m1,m2,m3mismlosingm(observedmearlierminmthemlecture),mandmhencem1,m2,mnmformnm4mismwinning.
m1,m3,mnmismwinningmformanymnm3mbymmovingmtom1,m3,m2.mForm1,m4,m5,mreducingmanymheapmprodu
≥ ≥
cesmamwinningmposition,msomthismismlosing.
Themgeneralmpatternmformthemlosingmpositionsmthusmseemsmtombe:m1,mm,mmm1,mform+evenmnumber
smm.m Thismincludesmalsomthemcasemmm=m0,mwhichmwemcanmtakemasmthembasemcasemformanminduction
.m Wemnowmproceedmtomprovemthismformally.
Firstmwemshowmthatmifmthempositionsmofmthemformm1,mm,mnmwithmmmmmmmmnm≤aremlosingmwhenmmmisme
venmandmnm=mmm1,mthenm+ thesemaremthemonlymlosingmpositionsmbecausemanymothermpositionm1,mm,m
nm withmmm m nm ismwinning.m ≤ Namely,mifmmm =mnm thenmamwinningmmovemfromm1,mm,mmmismtom0,mm,mm,m
somwemcanmassumemmm<mn.m Ifmmmismevenmthenmnm>mmm m 1m(otherwisemwemwouldmbeminmthempositionm
+
1,mm,mmm m 1)mandmsomthemwinningmmovemismtom1,mm,mmm m 1.mIfmmmismoddmthenmthemwinningmmovemi
+ +
smtom1,mm,mmm1,mthemsamemasmpositionm1,mmm1,mmm(thismwouldm alsom bem am winningm movem fromm 1,mm,m
mm som therem them winningm movem ism notm unique). – −

Second,mwemshowmthatmanymmovemfromm1,mm,mmm+m1mwithmevenmmmismtomamwinningmposition,musingm
asminductivemhypothesismthatm1,mmJ,mmJm+m1mformevenmmJmandmmJm<mmmismamlosingmposition.mThem
movemtom0,mm,mmm+m1mproducesmamwinningmpositionmwithmcounter-
movemtom0,mm,mm.mAmmovemtom1,mmJ,mmm+m1mformmJm<mmmismtomamwinningmpositionmwithmthemcounter-
movemtom1,mmJ,mmJm+m1mifmmJmismevenmandmtom1,mmJ,mmJm−m1mifmmJmismodd.mAmmovemtom1,mm,mmmismt
omamwinningmpositionmwithmcounter-
movemtom0,mm,mm.mAmmovemtom1,mm,mmJmwithm mJm<m mmismalsomtomamwinningmpositionmwithmthemcount
er-
movemtom1,mmJm−m1,mmJmifm mJmismodd,mandmtom1,mmJm 1,mmJmifmmJmismevenm(inmwhichmcasemmJm 1m<mmm
+ mconcludesmtheminductionmproof.
becausemmmismeven).mThis +
ThismresultmisminmagreementmwithmthemtheoremmonmNimmheapmsizesmrepresentedmasmsumsmofmpowers
0
mofm2:m 1m m mm m nmismlosingmifmandmonlymif,mexceptmform2 ,mthempowersmofm2mmakingmupmmmandmnmco
∗m +∗ +∗
meminmpairs.mSomthesemmustmbemthemsamempowersmofm2,mexceptmform1m=m20,mwhichmoccursminmonlym
mmormn,mwheremwemhavemassumedmthatmnmismthemlargermnumber,msom1mappearsminm them representatio
nm ofm n:m Wem havem mm =m 2ammmmmm2bmmmmmm2c
+ + +m ·m ·m ·
form am >m bm >m cm >mmmmmmmm 1,mso
a b·mm ·+
mm ·mm ≥c + +m ·m ·m ·m + +
m mm ism even,m and,m withm them samem a,mb, mc, m.m. m.,m nm =m 2 2 2 1m =m mmmmm 1.m Then
m m m


∗1mmmmmmm
+m ∗ m+mmmmm
m∗ nmmmmmm 0.m Them followingm ism anmexamplem usingm them bitmrepresentationmwhere
mm=m12m(which
≡m∗ mdeterminesmthembitmpatternm1100,mwhichmofmcoursemdependsmonmm):
1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) Wemusem(a).mClearly,m1,m2,m3mismlosingmasmshownminm(1.2),mandmbecausemthemNim-
summofmthembinarymrepresentationsm01,m10,m11mism00.mExamplesmshowmthatmanymothermpositio
nmismwinning.mThemthreemnumbersmaremn,mnm+1,mnm m+2.mIfmnmismevenmthenmreducingmthemheapmofmsize
mnm2mtom1mcreatesmthempositionmn,mnm 1,m1mwhichmismlosingmasmshownminm(a).mIfmnmismodd,mthenm
+ +
nm 1mismevenmandmnmmm2m=m nmmm1mmm1msombymthemsamemargument,mamwinningmmovemismtomreduce
+ +
mthemNimmheapmofmsizemnmtom1m(whichmonlymworksmifmnm >m1).
(m +m )m+




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Futurenurses. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $18.09. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75323 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$18.09
  • (0)
  Add to cart