SOLUTION MANUA
Finite Mathematics & Its Application
13th Edition by Larry J. Goldstein
Chapters 1 - 12, Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
B B B B B 1–1
Chapter 2: Matrices
B 2–1
Chapter 3: Linear Programming, A Geometric Approach
B B B B B 3–1
Chapter 4: The Simplex Method
B B B 4–1
Chapter 5: Sets and Counting
B B B 5–1
Chapter 6: Probability
B 6–1
Chapter 7: Probability and Statistics
B B B 7–1
Chapter 8: Markov Processes
B B 8–1
Chapter 9: The Theory of Games
B B B B 9–1
Chapter 10: The Mathematics of Finance
B B B B 10–1
Chapter 11: Logic
B 11–1
Chapter 12: Difference Equations and Mathematical Models
B B B B B 12–1
, Chapter 1 B
ExercisesB1.1 5
6.B LeftB1,BdownB
2
1. RightB2,BupB3 y
y
(2,B3
) x
x
(–1,B – 2
B5B)
7.B LeftB20,BupB40
2. LeftB1,BupB4 y
y
(–20,B40)
(–1,B4)
x
x
8.B RightB25,BupB30
3.B DownB2 y
y
(25,B30)
x
x
(0,B–2)
9. PointBQBisB2BunitsBtoBtheBleftBandB2BunitsBupBor
4. RightB2
y (—2,B2).
10. PointBPBisB3BunitsBtoBtheBrightBandB2BunitsBdownBor
(3,—2).
x
(2,B0 1B
) 11. —2(1)B+B (3)B=B—2B+1B=B—1soB yesB theB pointB is
3
onBtheBline.
5. LeftB2,BupB1 1B
y 12. —2(2)B+B (6)B=B—1BisB false,B soB noB theB pointB isB not
3
onBtheBline
(–2,B1)
x
CopyrightB©B2023BPearsonBEducation,BIn 1-1
c.
, ChapterB1:BLinearBEquationsBandBStraightBLin ISM:BFiniteBMat
es h
1B 24.B 0B=B5
13 —2xB+B yB =B—1B SubstituteB theB xB andB y noBsolution
3
. x-
coordinatesBofBtheBpointBintoBtheBequation:
f 1B ıhB f h intercept:BnoneB
' ,B3 →B—2 ' 1 ı +B1B(3)B=B—1B→B—1+1B=B—1B is WhenBxB=B0,ByB=B
y' ı 'B ı
5By-
intercept:B(0,B5)
2BBB J yB2J 3
aBfalseBstatement.BSoBnoBtheBpointBisBnotBon 25.BWhenByB=B0,BxB=B
BtheBline. 7Bx-
f 1h f1 h intercept:B(7,B0)B0
14 —2 ' ı + ' ı (—1)B=B—1B isBtrueBsoByesBtheBpointBis B=B7
.
noBsolution
'y3 ıJBBB'y3 ıJ y-intercept:Bnone
onBtheBline. 26.B 0B=B–8x
15.B mB=B5,BbB=B8 xB=B0
x-intercept:B(0,B0)
16.B mB=B–2BandBbB=B–6 yB=B–8(0)
yB=B0
17.B yB=B0xB+B3;BmB=B0,BbB=B y-intercept:B(0,B0)
3
2B 2B 1B
yB=B xB+B0;B mB=B ,B bB=B0 27 0B=B xB–B1
18 3
3 3 .
. xB=B3
19.B 14xB+B7ByB=B21 x-intercept:B(3,B0)
1B
7ByB=B—14xB+B21 yB =B (0)B–B1
3
yB =B—2xB+B3
yB=B–1
y-intercept:B(0,B–1)
20 xB—ByB =B3 y
. —yB =B—xB+B3
yB =BxB—B3
(3,B0)
21.BBB 3xB=B5 x
5 (0,B–1)
xB=B
3
1 2
28. WhenBxB=B0,ByB=B0.
22 – xB+ yB =B10
. 2 3 WhenBxB=B1,ByB=B2.
2B 1B y
yB =B xB+10
3 2
3B
yB =B xB+15 (1,B2)
4 x
(0,B0)
23. 0B=B—4xB+B8
4xB =B8
xB=B2
x-intercept:B(2,B0)
yB=B–4(0)B+B8
1-2 CopyrightB©B2023BPearsonBEducation,BIn
c.