100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solutions Manual Foundations of Mathematical Economics By Michael Carter $14.99   Add to cart

Exam (elaborations)

Solutions Manual Foundations of Mathematical Economics By Michael Carter

 3 views  0 purchase
  • Course
  • Foundations of Mathematical Economics
  • Institution
  • Foundations Of Mathematical Economics

Solutions Manual Foundations of Mathematical Economics By Michael Carter

Preview 4 out of 288  pages

  • October 24, 2024
  • 288
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • Foundations of Mathematical Economics
  • Foundations of Mathematical Economics
avatar-seller
Madprofessor
Solutions Manual
Foundations of Mathematical Economics

Michael Carter

, c⃝ JJJ2001J MichaelJ Carter
SolutionsJ forJ FoundationsJ ofJ MathematicalJ Economics AllJrightsJreserved




ChapterJ 1:J SetsJ andJ Spaces

1.1
{J1,J3,J5,J7J. . . J}JorJ {J𝑛J ∈J𝑁J :J 𝑛J isJ oddJ}
1.2 EveryJ 𝑥 ∈ 𝐴J alsoJ belongsJ toJ 𝐵.J EveryJ 𝑥 ∈
𝐵J alsoJ belongsJ toJ 𝐴.J HenceJ 𝐴,J𝐵J haveJpreciselyJ theJ sameJ elements.
1.3 ExamplesJ ofJ finiteJ setsJ are
∙ theJ lettersJ ofJ theJ alphabetJ {JA,J B,J C,J . . . J ,J ZJ}
∙ theJ setJ ofJ consumersJ inJ anJ economy
∙ theJ setJ ofJ goodsJ inJ anJ economy
∙ theJ setJ ofJ playersJinJ aJ game.J
ExamplesJ ofJ infiniteJ setsJ are
∙ theJ realJ numbersJ ℜ
∙ theJ naturalJ numbersJ 𝔑
∙ theJ setJ ofJ allJ possibleJ colors
∙ theJ setJ ofJ possibleJ pricesJ ofJ copperJ onJ theJ worldJ market
∙ theJ setJ ofJ possibleJ temperaturesJ ofJ liquidJ water.
1.4J 𝑆J =J {J1,J2,J3,J4,J5,J6J},J 𝐸J =J {J2,J4,J6J}.
1.5 TheJ playerJ setJ isJ 𝑁J =J {JJenny,JChrisJ} . JTheirJ actionJ spacesJ are
𝐴𝑖J =J{JRock,JScissors,JPaperJ} 𝑖J =J Jenny,JChris
1.6 TheJ setJ ofJ playersJ isJ 𝑁J =J 1,{J2 , . .. , J𝑛J . }J TheJ strategyJ spaceJ ofJ eachJ playerJ isJ theJ setJofJ
feasibleJ outputs
𝐴𝑖J =J {J𝑞𝑖J ∈Jℜ+J :J 𝑞𝑖J ≤J𝑄𝑖J}
whereJ 𝑞𝑖JJisJJtheJ outputJ ofJ damJ 𝑖.
1.7 TheJ playerJ setJ isJ 𝑁J =J {1,J2,J3}. JThereJ areJ 23J =J 8J coalitions,J namely
𝒫(𝑁J)J =J {∅,J{1},J{2},J{3},J{1,J2},J{1,J3},J{2,J3},J{1,J2,J3}}
ThereJ areJ 210J coalitionsJ inJ aJ tenJ playerJ game.
1.8JJ AssumeJJthatJJ𝑥JJ∈J(𝑆J ∪J𝑇J)𝑐 .JJJThatJJisJJ𝑥JJ∈/JJ𝑆J ∪J𝑇J.JJJThisJJimpliesJJ𝑥JJ∈/JJ𝑆JJandJJ𝑥JJ∈/JJ𝑇J,JorJ𝑥J∈J𝑆𝑐Ja
ndJ 𝑥J∈J𝑇J𝑐.J Consequently,J 𝑥J∈J𝑆𝑐J∩J𝑇J𝑐.J Conversely,J assumeJ 𝑥J∈J𝑆𝑐J∩J𝑇J𝑐.JThisJJimpliesJJthatJJ𝑥J ∈J𝑆 𝑐JJan
dJJ𝑥J ∈J𝑇J𝑐 .JJJConsequentlyJJ𝑥J∈/JJ𝑆JJandJJ𝑥J∈/JJ𝑇JJandJJtherefore
𝑥 ∈/J 𝑆J∪J𝑇J. JThisJ impliesJJthatJ 𝑥J ∈J(𝑆J ∪J𝑇J)𝑐 . JTheJ otherJ identityJ isJ provedJ similarly.
1.9

𝑆J =J𝑁
𝑆∈𝒞

𝑆J =J∅
𝑆∈𝒞


1

, c⃝ JJJ2001J MichaelJ Carter
SolutionsJ forJ FoundationsJ ofJ MathematicalJ Economics AllJrightsJreserved


𝑥2
1




𝑥1
-1 0 1




-1

FigureJ 1.1:J TheJ relationJ {J(𝑥,J𝑦)J :J 𝑥2J +J 𝑦2J =J 1J}


1.10J TheJ sampleJ spaceJ ofJ aJ singleJ coinJ tossJ isJ𝐻,J{𝑇J .J The}J setJ ofJ possibleJ outcomesJ inJthreeJ
tossesJ isJ theJ product
{
{𝐻,J𝑇J} × J{𝐻,J𝑇J} × J{𝐻,J𝑇J}J=J (𝐻,J𝐻,J𝐻),J(𝐻,J𝐻,J𝑇J),J(𝐻,J𝑇J,J𝐻),
}
(𝐻,J𝑇J,J𝑇J),J(𝑇,J𝐻,J𝐻),J(𝑇,J𝐻,J𝑇J),J(𝑇,J𝑇,J𝐻),J(𝑇,J𝑇,J𝑇J)


AJ typicalJ outcomeJ isJ theJ sequenceJ (𝐻,J𝐻,J𝑇J)J ofJ twoJ headsJ followedJ byJ aJ tail.
1.11

𝑌J ∩Jℜ+𝑛J =J {0}

whereJ0J =J(0,J0, . . . J,J0)JisJtheJproductionJplanJusingJnoJinputsJandJproducingJnoJoutputs.JT
oJ seeJ this,J firstJ noteJ thatJ 0J isJ aJ feasibleJ productionJ plan.J Therefore,J 0J ∈J𝑌J.J Also,
0J ∈Jℜ𝑛J+andJ thereforeJ 0J ∈J𝑌J ∩Jℜ𝑛J . +

ToJshowJthatJthereJisJnoJotherJfeasibleJproductionJplanJinJJJJJ𝑛J,Jwe
ℜ +JassumeJtheJcontrary.JThatJ
is,JweJassumeJthereJisJsomeJfeasibleJproductionJplanJyJJJJJJJJ𝑛JJJJJJ∈0JℜJJ.JJJ+
∖J{J } JimpliesJtheJexist
This
enceJofJaJplanJproducingJaJpositiveJoutputJwithJnoJinputs.JThisJtechnologicalJinfeasible,J s
oJ thatJ 𝑦J∈/J 𝑌J.
1.12 1. JJLetJJxJ ∈J𝑉J(𝑦 ). JJThisJJimpliesJJthatJJ(𝑦,J−x)J ∈J𝑌J. JJLetJJx′J ≥Jx.JJ ThenJJ(𝑦,J−x′ )J ≤
(𝑦,J−x)J andJ freeJ disposabilityJ impliesJJthatJ (𝑦,J−x′ )J ∈J𝑌J. JThereforeJ x′J∈J𝑉J(𝑦 ).
2.JJ AgainJJassumeJJ xJJ ∈J 𝑉J(𝑦 ).JJJJThisJJ impliesJJ thatJJ (𝑦,J−x)JJ ∈J 𝑌J.JJJJByJJ freeJJ disposal,J(𝑦 ′ ,J−x
)J ∈J𝑌JJ forJ everyJ 𝑦 ′J≤J𝑦 ,J whichJ impliesJJthatJ xJ ∈J𝑉J(𝑦 ′ ).JJ𝑉J(𝑦 ′ )J ⊇J𝑉J(𝑦 ).
1.13 TheJ domainJ ofJ “<”J isJ {1,J2}J=J 𝑋J andJ theJ rangeJ isJ {2,J3}J⫋J 𝑌J.
1.14 FigureJ1.1.
1.15 TheJ relationJ “isJ strictlyJ higherJ than”J isJ transitive,J antisymmetricJ andJ asymmetric.JI
tJ isJ notJ complete,J reflexiveJ orJ symmetric.




2

, c⃝ JJJ2001J MichaelJ Carter
SolutionsJ forJ FoundationsJ ofJ MathematicalJ Economics AllJrightsJreserved


1.16 TheJ followingJ tableJ listsJ theirJ respectiveJ properties.
< ≤√JJ √=
reflexive ×JJ
transitive √ √JJ √
√JJ √
symmetric ×JJ

asymmetric
anti-symmetric √JJ ×√JJ ×√
√J √ J
complete ×
NoteJ thatJ theJ propertiesJ ofJ symmetryJ andJ anti-symmetryJ areJ notJ mutuallyJ exclusive.
1.17 LetJbe ∼ JanJequivalenceJrelationJofJaJsetJ𝑋J=J. J∕That J ∅ Jis,JtheJrelationJisJreflexive,
∼ Jsymme

tricJandJtransitive.JWeJfirstJshowJthatJeveryJ𝑥J𝑋Jbelongs∈JtoJsomeJequivalenceJclass.J LetJ 𝑎
J beJ anyJ elementJ inJ 𝑋J andJ letJ (𝑎)J beJ theJ class
∼ J ofJ elementsJ equivalentJ to
𝑎,JthatJ is
∼(𝑎)J ≡J{J𝑥J ∈J𝑋J :J 𝑥J ∼J𝑎J}
Since ∼ isJ reflexive,J 𝑎 ∼ 𝑎JandJsoJ𝑎 ∈J∼ (𝑎).J EveryJ 𝑎 ∈
𝑋J belongsJ toJ someJ equivalenceJclassJ andJ therefore

𝑋J = ∼(𝑎)
𝑎∈𝑋

Next,J weJ showJ thatJ theJ equivalenceJ classesJ areJ eitherJ disjointJ orJ identical,JJthatJ is
∼(𝑎)J ∕=J ∼(𝑏)J ifJ andJ onlyJ ifJ f∼(𝑎)J∩J∼(𝑏) J=J ∅.
First,J assumeJ ∼(𝑎)J∩J∼(𝑏) J=J ∅. JThenJ 𝑎J ∈J∼(𝑎)J butJJ𝑎 ∈ ∼(𝑏/ ). JThereforeJ ∼(𝑎)J ∕=J ∼(𝑏).
Conversely,JJassumeJJ∼(𝑎)J ∩J∼(𝑏)JJ∕=JJ∅JandJJletJJ𝑥JJ∈J∼(𝑎)J ∩J∼(𝑏).JJJThenJJ𝑥JJ∼J𝑎JJandJJbyJsymmetryJ 𝑎
J ∼J𝑥.JJJAlsoJ 𝑥J ∼J𝑏JandJsoJ byJ transitivityJ𝑎J ∼J𝑏.JJJLetJ𝑦J beJ anyJelementJinJJ∼(𝑎)JJsoJJthatJJ𝑦JJ∼J𝑎
.JJJAgainJJbyJJtransitivityJJ𝑦JJ∼J𝑏JJandJJthereforeJJ𝑦JJ∈J∼(𝑏).JJJHence
∼(𝑎)J ⊆J∼(𝑏). JSimilarJJreasoningJ impliesJJthatJ ∼(𝑏)J ⊆J∼(𝑎). JThereforeJ ∼(𝑎) J=J ∼(𝑏).
WeJ concludeJ thatJ theJ equivalenceJ classesJ partitionJ 𝑋.
1.18 TheJsetJofJproperJcoalitionsJisJ notJaJpartitionJofJtheJ setJofJplayers,JsinceJanyJplayerJc
anJ belongJ toJ moreJ thanJ oneJ coalition.JForJ example,J playerJ1J belongsJ toJ theJ coalitions
{1},J {1,J2}JandJ soJ on.
1.19

𝑥J ≻J𝑦J =⇒J 𝑥J ≿J𝑦J andJ 𝑦J ∕≿J 𝑥
𝑦J ∼J𝑧J =⇒J 𝑦J ≿J 𝑧J andJ 𝑧J ≿J 𝑦
TransitivityJ ofJ ≿JimpliesJ 𝑥J≿J𝑧 . JWeJ needJ toJ showJ thatJ 𝑧J∕≿J𝑥 . JAssumeJ otherwise,J thatJisJ ass
umeJ 𝑧J ≿J 𝑥J ThisJ impliesJ 𝑧J ∼J𝑥J andJ byJ transitivityJ 𝑦J ∼J𝑥.J ButJ thisJ impliesJ that
𝑦J ≿J𝑥J whichJ contradicts J theJ assumptionJ thatJ 𝑥J ≻J𝑦 . J ThereforeJ weJ concludeJ thatJ 𝑧J ∕≿J 𝑥
andJ thereforeJ 𝑥J ≻J𝑧 . JTheJ otherJ resultJ isJ provedJ inJ similarJ fashion.
1.20 asymmetricJ AssumeJ 𝑥J ≻J𝑦.
𝑥J ≻J𝑦J =⇒J 𝑦J ∕≿J𝑥
while
𝑦J ≻J𝑥J =⇒J 𝑦J ≿J 𝑥
Therefore
𝑥J ≻J𝑦J =⇒J 𝑦J ∕≻J𝑥


3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Madprofessor. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $14.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$14.99
  • (0)
  Add to cart