100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solutions for Concise Introduction to Linear Algebra 1st Edition by Hu (All Chapters included) $29.49   Add to cart

Exam (elaborations)

Solutions for Concise Introduction to Linear Algebra 1st Edition by Hu (All Chapters included)

 2 views  0 purchase
  • Course
  • Concise Introduction to Linear Algebra 1e Hu
  • Institution
  • Concise Introduction To Linear Algebra 1e Hu

Complete Solutions Manual for Concise Introduction to Linear Algebra 1st Edition by Qingwen Hu ; ISBN13: 9780367657703.....(Full Chapters included)...1. Vectors and linear systems 2. Solving linear systems 3. Vector spaces 4. Orthogonality 5. Determinants 6. Eigenvalues and eigenvectors 7. Si...

[Show more]

Preview 4 out of 191  pages

  • October 26, 2024
  • 191
  • 2019/2020
  • Exam (elaborations)
  • Questions & answers
  • Concise Introduction to Linear Algebra 1e Hu
  • Concise Introduction to Linear Algebra 1e Hu
avatar-seller
mizhouubcca
Solution Manual for Concise Introduction to
Linear Algebra

Qingwen Hu




Complete Chapter Solutions Manual
are included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Contents



Preface ix

1 Vectors and linear systems 1

1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot product . . . . . . . . . . . . . . . . . 5
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Solving linear systems 11

2.1 Vectors and linear equations . . . . . . . . . . . . . . . . . . 11
2.2 Matrix operations . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Inverse matrices . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Transpose and permutation . . . . . . . . . . . . . . . . . . . 25

3 Vector spaces 31

3.1 Spaces of vectors . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Nullspace, row space and column space . . . . . . . . . . . . 35
3.3 Solutions of Ax = b . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Rank of matrices . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Bases and dimensions of general vector spaces . . . . . . . . 45

4 Orthogonality 55

4.1 Orthogonality of the four subspaces . . . . . . . . . . . . . . 55
4.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Least squares approximations . . . . . . . . . . . . . . . . . . 72
4.4 Orthonormal bases and Gram–Schmidt . . . . . . . . . . . . 77

5 Determinants 85

5.1 Introduction to determinants . . . . . . . . . . . . . . . . . . 85
5.2 Properties of determinants . . . . . . . . . . . . . . . . . . . 89



vii

,viii Contents

6 Eigenvalues and eigenvectors 99

6.1 Introduction to eigenvectors and eigenvalues . . . . . . . . . 99
6.2 Diagonalizability . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Applications to differential equations . . . . . . . . . . . . . 111
6.4 Symmetric matrices and quadratic forms . . . . . . . . . . . 119
6.5 Positive definite matrices . . . . . . . . . . . . . . . . . . . . 134

7 Singular value decomposition 141

7.1 Singular value decomposition . . . . . . . . . . . . . . . . . . 141
7.2 Principal component analysis . . . . . . . . . . . . . . . . . . 149

8 Linear transformations 151

8.1 Linear transformation and matrix representation . . . . . . . 151
8.2 Range and null spaces of linear transformation . . . . . . . . 155
8.3 Invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . 158
8.4 Decomposition of vector spaces . . . . . . . . . . . . . . . . . 161
8.5 Jordan normal form . . . . . . . . . . . . . . . . . . . . . . . 164
8.6 Computation of Jordan normal form . . . . . . . . . . . . . . 165

9 Linear programming 173

9.1 Extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2 Simplex method . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3 Simplex tableau . . . . . . . . . . . . . . . . . . . . . . . . . 176

, Chapter 1
Vectors and linear systems


1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7




1.1 Vectors and linear combinations
Exercise 1.1.1.
[ ] [ ]
1 2
1. Let u = , v = . i) Sketch the directed line segments in R2 that
1 3
represents u and v, respectively; ii) Use the parallelogram law to visualize the
] 2u, 2u + 5v and 2v − 5u; iv) Solve the system
vector addition u + v; iii)[ Find
−1
of equations xu + yv = for (x, y) ∈ R2 and draw the row picture and
1
the column picture.
Solution: i)


v = (2, 3)




u = (1, 1)


(0, 0)



FIGURE 1.1: u = (1, 1), v = (2, 3)


ii)

1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller mizhouubcca. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $29.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$29.49
  • (0)
  Add to cart