100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual Foundations of Mathematical Economics By Michael Carter

Rating
-
Sold
-
Pages
440
Grade
A+
Uploaded on
27-10-2024
Written in
2024/2025

Solutions Manual Foundations of Mathematical Economics By Michael Carter Solutions Manual Foundations of Mathematical Economics By Michael Carter FREE TESTBANK SOLUTION MANUAL DOWNLOAD!!!foundations of mathematical economics

Institution
Foundations Of Mathematical Economics
Course
Foundations of Mathematical Economics











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Foundations of Mathematical Economics
Course
Foundations of Mathematical Economics

Document information

Uploaded on
October 27, 2024
Number of pages
440
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • mathematical economics

Content preview

Solutions Manual
Foundations of Mathematical Economics

Michael Carter

, ⃝ cQQQ2001Q MichaelQ Cart
SolutionsQ forQ FoundationsQ ofQ MathematicalQ Economi er AllQrightsQreserve
cs d



ChapterQ 1:Q SetsQ andQ Spaces

1.1
{Q1,Q3,Q5,Q7Q. . . Q}QorQ {Q�Q ∈ Q�Q :Q �Q isQ oddQ}
1.2 EveryQ � ∈ �Q alsoQ belongsQ toQ �.Q EveryQ �

�Q alsoQ belongsQ toQ �.Q HenceQ �,Q�Q haveQpreciselyQ theQ sameQ elements.
1.3 ExamplesQ ofQ finiteQ setsQ are
∙ theQ lettersQ ofQ theQ alphabetQ {QA,Q B,Q C,Q . . . Q ,Q ZQ}
∙ theQ setQ ofQ consumersQ inQ anQ economy
∙ theQ setQ ofQ goodsQ inQ anQ economy
∙ theQ setQ ofQ playersQinQ aQ ga
me.QExamplesQ ofQ infiniteQ setsQ ar
e
∙ theQ realQ numbersQ ℜ
∙ theQ naturalQ numbersQ �
∙ theQ setQ ofQ allQ possibleQ colors
∙ theQ setQ ofQ possibleQ pricesQ ofQ copperQ onQ theQ worldQ market
∙ theQ setQ ofQ possibleQ temperaturesQ ofQ liquidQ water.
1.4Q �Q =Q {Q1,Q2,Q3,Q4,Q5,Q6Q},Q �Q =Q {Q2,Q4,Q6Q}.
1.5 TheQ playerQ setQ isQ �Q =Q {QJenny,QChrisQ} . QTheirQ actionQ spacesQ are
��Q =Q{QRock,QScissors,QPaperQ} �Q =Q Jenny,QChris
1.6 TheQ setQ ofQ playersQ isQ �Q ={Q 1,Q2 , . . ., Q}�Q . Q TheQ strategyQ spaceQ ofQ eachQ playerQ isQ t
heQ setQofQ feasibleQ outputs
��Q =Q {Q��Q ∈ Qℜ +Q :Q ��Q ≤ Q��Q}
whereQ ��QQisQQtheQ outputQ ofQ damQ �.
3
1.7 TheQ playerQ setQ isQ �Q =Q {1,Q2,Q3}. QThereQ areQ 2 Q =Q 8Q coalitions,Q namely
� (�Q)Q =Q {∅ ,Q{1},Q{2},Q{3},Q{1,Q2},Q{1,Q3},Q{2,Q3},Q{1,Q2,Q3}}
10
ThereQ areQ 2 Q coalitionsQ inQ aQ tenQ playerQ game.
1.8QQ AssumeQQthatQQ�QQ∈ Q(�Q ∪ Q�Q)� .QQQThatQQisQQ�QQ∈/QQ�Q ∪ Q�Q.QQQThisQQimpliesQQ�QQ∈/QQ�
� � � �
QQandQQ�QQ∈/QQ�Q,QorQ�Q∈ Q� QandQ �Q∈ Q�Q .Q Consequently,Q �Q∈ Q� Q∩ Q�Q .Q Conversely,Q assu
� � � �
meQ �Q∈ Q� Q∩Q�Q .QThisQQimpliesQQthatQQ�Q ∈ Q� QQandQQ�Q ∈ Q�Q .QQQConsequentlyQQ�Q∈/QQ�
QQandQQ�Q∈/QQ�QQ andQQtherefore

�∈/Q �Q ∪ Q�Q. QThisQ impliesQQthatQ �Q ∈ Q(�Q ∪ Q�Q)� . QTheQ otherQ identityQ isQ provedQ similarly.
1.9

�Q =Q�
�∈�

�Q =Q∅
�∈�


1

, ⃝ cQQQ2001Q MichaelQ Cart
SolutionsQ forQ FoundationsQ ofQ MathematicalQ Economi er AllQrightsQreserve
cs d

�2
1




�1
-1 0 1




-1
2 2
FigureQ 1.1:Q TheQ relationQ {Q(�,Q�)Q :Q � Q +Q � Q =Q 1Q}


1.10Q TheQ sampleQ spaceQ ofQ aQ singleQ coinQ tossQ {isQ�,Q�}Q .Q TheQ setQ ofQ possibleQ outcomes
Q inQthreeQ tossesQ isQ theQ product

{
{�,Q�Q} ×Q{�,Q�Q} ×Q{�,Q�Q}Q=Q (�,Q�,Q�),Q(�,Q�,Q�Q),Q(�,Q�Q,Q�),
}
(�,Q�Q,Q�Q),Q(�,Q�,Q�),Q(�,Q�,Q�Q),Q(�,Q�,Q�),Q(�,Q�,Q�Q)


AQ typicalQ outcomeQ isQ theQ sequenceQ (�,Q�,Q�Q)Q ofQ twoQ headsQ followedQ byQ aQ tail.
1.11

�Q ∩Qℜ+�Q =Q {0}

whereQ0Q =Q(0,Q0 , . . . Q,Q0)QisQtheQproductionQplanQusingQnoQinputsQandQproducingQnoQou
tputs.QToQ seeQ this,Q firstQ noteQ thatQ 0Q isQ aQ feasibleQ productionQ plan.Q Therefore,Q 0Q
∈ Q�Q.Q Also,
0Q ∈ Qℜ �+Q andQ thereforeQ 0Q ∈ Q�Q ∩Qℜ �Q+.

ToQshowQthatQthereQisQnoQotherQfeasibleQproductionQplanQinℜQQQQQ
+ Q,QweQassumeQtheQcont

rary.QThatQis,QweQassumeQthereQisQsomeQfeasibleQproductionQ∈plan Qℜ Q +
∖QQ{yQQQQQQQQQ
} QQQQQQ0Q
Q.QQThisQimpliesQtheQexistenceQofQaQplanQproducingQaQpositiveQoutputQwithQnoQinputs.

QThisQtechnologicalQinfeasible,Q soQ thatQ �Q∈/Q �Q.

1.12 1. QQLetQQxQ ∈ Q�Q(�). QQThisQQimpliesQQthatQQ(�,Q− x)Q ∈ Q�Q. QQLetQQx′Q ≥ Qx.QQ ThenQQ(�,Q− x′ )Q ≤
(�,Q− x)Q andQ freeQ disposabilityQ impliesQQthatQ (�,Q− x′ )Q ∈ Q�Q. QThereforeQ x′Q∈ Q�Q(�).
2.QQ AgainQQ assumeQQ xQQ ∈ Q �Q(�).QQQQThisQQ impliesQQ thatQQ (�,Q− x)QQ ∈ Q �Q.QQQQByQQ free
QQ disposal,Q(� ′ ,Q− x)Q ∈ Q�QQ forQ everyQ � ′Q≤ Q�,Q whichQ impliesQQthatQ xQ ∈ Q�Q(� ′ ).QQ�Q(�
′ )Q ⊇ Q�Q(�).

1.13 TheQ domainQ ofQ “<”Q isQ {1,Q2}Q=Q �Q andQ theQ rangeQ isQ {2,Q3}Q⫋Q �Q.
1.14 FigureQ1.1.
1.15 TheQ relationQ “isQ strictlyQ higherQ than”Q isQ transitive,Q antisymmetricQ andQ asymm
etric.QItQ isQ notQ complete,Q reflexiveQ orQ symmetric.


2

, ⃝ cQQQ2001Q MichaelQ Cart
SolutionsQ forQ FoundationsQ ofQ MathematicalQ Economi er AllQrightsQreserve
cs d
1.16 TheQ followingQ tableQ listsQ theirQ respectiveQ properties.
< ≤√QQ √=
reflexive ×QQ
transitive √ √QQ √
symmetric √QQ √
×QQ

asymmetric
anti-symmetric √QQ × QQ ×
√ √
√Q √Q
complete ×
NoteQ thatQ theQ propertiesQ ofQ symmetryQ andQ anti-symmetryQ areQ notQ mutuallyQ exclusive.
1.17 LetQ∼beQanQequivalenceQrelationQofQaQsetQ�∕QQ=∅ Q. Q ThatQis,QtheQrelation ∼ QisQreflexiv
e,QsymmetricQandQtransitive.QWeQfirstQshowQthatQevery ∈ Q�Q�QbelongsQtoQsomeQequiv
alenceQclass.Q LetQ �Q beQ anyQ elementQ inQ �
∼ Q andQ letQ (�)Q beQ theQ classQ ofQ elementsQ e
quivalentQ to
�,Q thatQ is
∼(�)Q ≡Q{Q�Q ∈ Q�Q :Q �Q ∼ Q�Q}
Since ∼ isQ reflexive,Q �∼ �QandQsoQ�∈ Q∼ (�).Q EveryQ �∈
�Q belongsQ toQ someQ equivalenceQclassQ andQ therefore

�Q = ∼(�)
�∈�

Next,Q weQ showQ thatQ theQ equivalenceQ classesQ areQ eitherQ disjointQ orQ identical,QQth
atQ is
∼(�)Q ∕=Q ∼(�)Q ifQ andQ onlyQ ifQ f∼(�)Q∩Q∼ (�) Q=Q ∅ .
First,Q assumeQ ∼(�)Q∩Q∼ (�) Q=Q ∅ . QThenQ �Q ∈ Q∼(�)Q butQQ�∈
�/ ∼( ). QThereforeQ ∼(�)Q ∕=Q ∼(�).
Conversely,QQassumeQQ∼(�)Q ∩Q∼(�)QQ∕=QQ∅ QandQQletQQ�QQ∈ Q∼(�)Q ∩Q∼(�).QQQThenQQ�QQ∼ Q�QQan
dQQbyQsymmetryQ �Q ∼ Q�.QQQAlsoQ �Q ∼ Q�QandQsoQ byQ transitivityQ�Q ∼ Q�.QQQLetQ�Q beQ anyQ
elementQinQQ∼(�)QQsoQQthatQQ�QQ∼ Q�.QQQAgainQQbyQQtransitivityQQ�QQ∼ Q�QQandQQthereforeQQ
�QQ∈ Q∼(�).QQQHence
∼(�)Q ⊆ Q∼(�). QSimilarQQreasoningQ impliesQQthatQ ∼(�)Q ⊆ Q∼(�). QThereforeQ ∼(�) Q=Q ∼(�).
WeQ concludeQ thatQ theQ equivalenceQ classesQ partitionQ �.
1.18 TheQsetQofQproperQcoalitionsQisQ notQ aQpartitionQofQtheQ setQofQ players,QsinceQ any
Q playerQcanQ belongQ toQ moreQ thanQ oneQ coalition.QForQ example,Q playerQ 1Q belongsQ toQ

theQ coalitions
{1},Q {1,Q2}QandQ soQ on.
1.19

�Q ≻Q�Q =⇒ Q �Q ≿Q �Q andQ �Q ∕≿Q �
�Q ∼ Q�Q =⇒ Q �Q ≿Q �Q andQ �Q ≿Q�
TransitivityQ ofQ ≿QimpliesQ �Q≿Q� . QWeQ needQ toQ showQ thatQ �Q∕≿Q� . QAssumeQ otherwise,
Q thatQisQ assumeQ �Q ≿Q �Q ThisQ impliesQ �Q ∼Q�Q andQ byQ transitivityQ �Q ∼Q�.Q ButQ thisQ im
pliesQ that
�Q ≿Q�Q whichQ contradictsQ theQ assumptionQ thatQ �Q ≻Q� . Q ThereforeQ weQ concludeQ thatQ �Q ∕≿Q �
andQ thereforeQ �Q ≻Q� . QTheQ otherQ resultQ isQ provedQ inQ similarQ fashion.
1.20 asymmetricQ AssumeQ �Q ≻Q�.

Therefore
while

3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
GeniusSolutions Michigan State University
View profile
Follow You need to be logged in order to follow users or courses
Sold
16
Member since
1 year
Number of followers
2
Documents
277
Last sold
1 month ago
GENIUS_ ACADEMY!!!

In my shop you find all types of Test banks and solution manuals for Business, Accounting &amp; Nursing courses. Am dedicated to ensuring that you pass in your exams....SATISFACTION GUARANTEED!!!!

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions