100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solutions Manual Foundations of Mathematical Economics By Michael Carter $16.49   Add to cart

Exam (elaborations)

Solutions Manual Foundations of Mathematical Economics By Michael Carter

 5 views  0 purchase
  • Course
  • Foundations of Mathematical Economics
  • Institution
  • Foundations Of Mathematical Economics

Solutions Manual Foundations of Mathematical Economics By Michael Carter Solutions Manual Foundations of Mathematical Economics By Michael Carter FREE TESTBANK SOLUTION MANUAL DOWNLOAD!!!foundations of mathematical economics

Preview 4 out of 440  pages

  • October 27, 2024
  • 440
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • mathematical economics
  • Foundations of Mathematical Economics
  • Foundations of Mathematical Economics
avatar-seller
TestbanksAcademy
Solutions Manual
Foundations of Mathematical Economics

Michael Carter

, ⃝ cQQQ2001Q MichaelQ Cart
SolutionsQ forQ FoundationsQ ofQ MathematicalQ Economi er AllQrightsQreserve
cs d



ChapterQ 1:Q SetsQ andQ Spaces

1.1
{Q1,Q3,Q5,Q7Q. . . Q}QorQ {Q�Q ∈ Q�Q :Q �Q isQ oddQ}
1.2 EveryQ � ∈ �Q alsoQ belongsQ toQ �.Q EveryQ �

�Q alsoQ belongsQ toQ �.Q HenceQ �,Q�Q haveQpreciselyQ theQ sameQ elements.
1.3 ExamplesQ ofQ finiteQ setsQ are
∙ theQ lettersQ ofQ theQ alphabetQ {QA,Q B,Q C,Q . . . Q ,Q ZQ}
∙ theQ setQ ofQ consumersQ inQ anQ economy
∙ theQ setQ ofQ goodsQ inQ anQ economy
∙ theQ setQ ofQ playersQinQ aQ ga
me.QExamplesQ ofQ infiniteQ setsQ ar
e
∙ theQ realQ numbersQ ℜ
∙ theQ naturalQ numbersQ �
∙ theQ setQ ofQ allQ possibleQ colors
∙ theQ setQ ofQ possibleQ pricesQ ofQ copperQ onQ theQ worldQ market
∙ theQ setQ ofQ possibleQ temperaturesQ ofQ liquidQ water.
1.4Q �Q =Q {Q1,Q2,Q3,Q4,Q5,Q6Q},Q �Q =Q {Q2,Q4,Q6Q}.
1.5 TheQ playerQ setQ isQ �Q =Q {QJenny,QChrisQ} . QTheirQ actionQ spacesQ are
��Q =Q{QRock,QScissors,QPaperQ} �Q =Q Jenny,QChris
1.6 TheQ setQ ofQ playersQ isQ �Q ={Q 1,Q2 , . . ., Q}�Q . Q TheQ strategyQ spaceQ ofQ eachQ playerQ isQ t
heQ setQofQ feasibleQ outputs
��Q =Q {Q��Q ∈ Qℜ +Q :Q ��Q ≤ Q��Q}
whereQ ��QQisQQtheQ outputQ ofQ damQ �.
3
1.7 TheQ playerQ setQ isQ �Q =Q {1,Q2,Q3}. QThereQ areQ 2 Q =Q 8Q coalitions,Q namely
� (�Q)Q =Q {∅ ,Q{1},Q{2},Q{3},Q{1,Q2},Q{1,Q3},Q{2,Q3},Q{1,Q2,Q3}}
10
ThereQ areQ 2 Q coalitionsQ inQ aQ tenQ playerQ game.
1.8QQ AssumeQQthatQQ�QQ∈ Q(�Q ∪ Q�Q)� .QQQThatQQisQQ�QQ∈/QQ�Q ∪ Q�Q.QQQThisQQimpliesQQ�QQ∈/QQ�
� � � �
QQandQQ�QQ∈/QQ�Q,QorQ�Q∈ Q� QandQ �Q∈ Q�Q .Q Consequently,Q �Q∈ Q� Q∩ Q�Q .Q Conversely,Q assu
� � � �
meQ �Q∈ Q� Q∩Q�Q .QThisQQimpliesQQthatQQ�Q ∈ Q� QQandQQ�Q ∈ Q�Q .QQQConsequentlyQQ�Q∈/QQ�
QQandQQ�Q∈/QQ�QQ andQQtherefore

�∈/Q �Q ∪ Q�Q. QThisQ impliesQQthatQ �Q ∈ Q(�Q ∪ Q�Q)� . QTheQ otherQ identityQ isQ provedQ similarly.
1.9

�Q =Q�
�∈�

�Q =Q∅
�∈�


1

, ⃝ cQQQ2001Q MichaelQ Cart
SolutionsQ forQ FoundationsQ ofQ MathematicalQ Economi er AllQrightsQreserve
cs d

�2
1




�1
-1 0 1




-1
2 2
FigureQ 1.1:Q TheQ relationQ {Q(�,Q�)Q :Q � Q +Q � Q =Q 1Q}


1.10Q TheQ sampleQ spaceQ ofQ aQ singleQ coinQ tossQ {isQ�,Q�}Q .Q TheQ setQ ofQ possibleQ outcomes
Q inQthreeQ tossesQ isQ theQ product

{
{�,Q�Q} ×Q{�,Q�Q} ×Q{�,Q�Q}Q=Q (�,Q�,Q�),Q(�,Q�,Q�Q),Q(�,Q�Q,Q�),
}
(�,Q�Q,Q�Q),Q(�,Q�,Q�),Q(�,Q�,Q�Q),Q(�,Q�,Q�),Q(�,Q�,Q�Q)


AQ typicalQ outcomeQ isQ theQ sequenceQ (�,Q�,Q�Q)Q ofQ twoQ headsQ followedQ byQ aQ tail.
1.11

�Q ∩Qℜ+�Q =Q {0}

whereQ0Q =Q(0,Q0 , . . . Q,Q0)QisQtheQproductionQplanQusingQnoQinputsQandQproducingQnoQou
tputs.QToQ seeQ this,Q firstQ noteQ thatQ 0Q isQ aQ feasibleQ productionQ plan.Q Therefore,Q 0Q
∈ Q�Q.Q Also,
0Q ∈ Qℜ �+Q andQ thereforeQ 0Q ∈ Q�Q ∩Qℜ �Q+.

ToQshowQthatQthereQisQnoQotherQfeasibleQproductionQplanQinℜQQQQQ
+ Q,QweQassumeQtheQcont

rary.QThatQis,QweQassumeQthereQisQsomeQfeasibleQproductionQ∈plan Qℜ Q +
∖QQ{yQQQQQQQQQ
} QQQQQQ0Q
Q.QQThisQimpliesQtheQexistenceQofQaQplanQproducingQaQpositiveQoutputQwithQnoQinputs.

QThisQtechnologicalQinfeasible,Q soQ thatQ �Q∈/Q �Q.

1.12 1. QQLetQQxQ ∈ Q�Q(�). QQThisQQimpliesQQthatQQ(�,Q− x)Q ∈ Q�Q. QQLetQQx′Q ≥ Qx.QQ ThenQQ(�,Q− x′ )Q ≤
(�,Q− x)Q andQ freeQ disposabilityQ impliesQQthatQ (�,Q− x′ )Q ∈ Q�Q. QThereforeQ x′Q∈ Q�Q(�).
2.QQ AgainQQ assumeQQ xQQ ∈ Q �Q(�).QQQQThisQQ impliesQQ thatQQ (�,Q− x)QQ ∈ Q �Q.QQQQByQQ free
QQ disposal,Q(� ′ ,Q− x)Q ∈ Q�QQ forQ everyQ � ′Q≤ Q�,Q whichQ impliesQQthatQ xQ ∈ Q�Q(� ′ ).QQ�Q(�
′ )Q ⊇ Q�Q(�).

1.13 TheQ domainQ ofQ “<”Q isQ {1,Q2}Q=Q �Q andQ theQ rangeQ isQ {2,Q3}Q⫋Q �Q.
1.14 FigureQ1.1.
1.15 TheQ relationQ “isQ strictlyQ higherQ than”Q isQ transitive,Q antisymmetricQ andQ asymm
etric.QItQ isQ notQ complete,Q reflexiveQ orQ symmetric.


2

, ⃝ cQQQ2001Q MichaelQ Cart
SolutionsQ forQ FoundationsQ ofQ MathematicalQ Economi er AllQrightsQreserve
cs d
1.16 TheQ followingQ tableQ listsQ theirQ respectiveQ properties.
< ≤√QQ √=
reflexive ×QQ
transitive √ √QQ √
symmetric √QQ √
×QQ

asymmetric
anti-symmetric √QQ × QQ ×
√ √
√Q √Q
complete ×
NoteQ thatQ theQ propertiesQ ofQ symmetryQ andQ anti-symmetryQ areQ notQ mutuallyQ exclusive.
1.17 LetQ∼beQanQequivalenceQrelationQofQaQsetQ�∕QQ=∅ Q. Q ThatQis,QtheQrelation ∼ QisQreflexiv
e,QsymmetricQandQtransitive.QWeQfirstQshowQthatQevery ∈ Q�Q�QbelongsQtoQsomeQequiv
alenceQclass.Q LetQ �Q beQ anyQ elementQ inQ �
∼ Q andQ letQ (�)Q beQ theQ classQ ofQ elementsQ e
quivalentQ to
�,Q thatQ is
∼(�)Q ≡Q{Q�Q ∈ Q�Q :Q �Q ∼ Q�Q}
Since ∼ isQ reflexive,Q �∼ �QandQsoQ�∈ Q∼ (�).Q EveryQ �∈
�Q belongsQ toQ someQ equivalenceQclassQ andQ therefore

�Q = ∼(�)
�∈�

Next,Q weQ showQ thatQ theQ equivalenceQ classesQ areQ eitherQ disjointQ orQ identical,QQth
atQ is
∼(�)Q ∕=Q ∼(�)Q ifQ andQ onlyQ ifQ f∼(�)Q∩Q∼ (�) Q=Q ∅ .
First,Q assumeQ ∼(�)Q∩Q∼ (�) Q=Q ∅ . QThenQ �Q ∈ Q∼(�)Q butQQ�∈
�/ ∼( ). QThereforeQ ∼(�)Q ∕=Q ∼(�).
Conversely,QQassumeQQ∼(�)Q ∩Q∼(�)QQ∕=QQ∅ QandQQletQQ�QQ∈ Q∼(�)Q ∩Q∼(�).QQQThenQQ�QQ∼ Q�QQan
dQQbyQsymmetryQ �Q ∼ Q�.QQQAlsoQ �Q ∼ Q�QandQsoQ byQ transitivityQ�Q ∼ Q�.QQQLetQ�Q beQ anyQ
elementQinQQ∼(�)QQsoQQthatQQ�QQ∼ Q�.QQQAgainQQbyQQtransitivityQQ�QQ∼ Q�QQandQQthereforeQQ
�QQ∈ Q∼(�).QQQHence
∼(�)Q ⊆ Q∼(�). QSimilarQQreasoningQ impliesQQthatQ ∼(�)Q ⊆ Q∼(�). QThereforeQ ∼(�) Q=Q ∼(�).
WeQ concludeQ thatQ theQ equivalenceQ classesQ partitionQ �.
1.18 TheQsetQofQproperQcoalitionsQisQ notQ aQpartitionQofQtheQ setQofQ players,QsinceQ any
Q playerQcanQ belongQ toQ moreQ thanQ oneQ coalition.QForQ example,Q playerQ 1Q belongsQ toQ

theQ coalitions
{1},Q {1,Q2}QandQ soQ on.
1.19

�Q ≻Q�Q =⇒ Q �Q ≿Q �Q andQ �Q ∕≿Q �
�Q ∼ Q�Q =⇒ Q �Q ≿Q �Q andQ �Q ≿Q�
TransitivityQ ofQ ≿QimpliesQ �Q≿Q� . QWeQ needQ toQ showQ thatQ �Q∕≿Q� . QAssumeQ otherwise,
Q thatQisQ assumeQ �Q ≿Q �Q ThisQ impliesQ �Q ∼Q�Q andQ byQ transitivityQ �Q ∼Q�.Q ButQ thisQ im
pliesQ that
�Q ≿Q�Q whichQ contradictsQ theQ assumptionQ thatQ �Q ≻Q� . Q ThereforeQ weQ concludeQ thatQ �Q ∕≿Q �
andQ thereforeQ �Q ≻Q� . QTheQ otherQ resultQ isQ provedQ inQ similarQ fashion.
1.20 asymmetricQ AssumeQ �Q ≻Q�.

Therefore
while

3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller TestbanksAcademy. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $16.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$16.49
  • (0)
  Add to cart