Deze samenvatting omvat ALLE leerstof te kennen voor alle NIET-wiskundige richtingen, gebaseerd op de vakfiche van de examencommissie/middenjury 2021.
DE SAMENVATTING BEVAT OOK VOORBEELDEN, OEFENINGEN (MET OPLOSSINGEN) EN MEER!
samenvatting examencommissie 3ASO 2021 Basis : Rekenregels Machte...
Very satisfied! This summary is worth every euro! :D
Show more reviews
Seller
Follow
annav1
Reviews received
Content preview
SAMENVATTING WISKUNDE
3ASO - EXAMENCOMMISSIE
ANNAV1 STUVIA | KNOOWY
,Inhoudsopgave
Reële functies................................................................................................................................................. 5
Herhaling............................................................................................................................................................ 5
Het begrip functie ......................................................................................................................................... 5
Definitie van een functie ............................................................................................................................... 5
Voorbeeld ................................................................................................................................................. 5
Notatie .......................................................................................................................................................... 6
Voorbeeld ................................................................................................................................................. 6
Absolute waarde....................................................................................................................................... 6
Kenmerken .................................................................................................................................................... 6
Domein en bereik ..................................................................................................................................... 6
Nulwaarden en nulpunten........................................................................................................................ 7
Voorbeeld ............................................................................................................................................ 7
Symmetrieën ............................................................................................................................................ 7
Symmetrie ten opzichte van de y-as .................................................................................................... 7
Symmetrie ten opzichte van de x-as .................................................................................................... 8
Symmetrie ten opzichte van de oorsprong.......................................................................................... 8
Symmetrie ten opzichte van de eerste bissectrice .............................................................................. 9
Stijgen, dalen of constant ......................................................................................................................... 9
Tekenverandering ................................................................................................................................... 10
Tekenschema wanneer de grafiek gegeven is ................................................................................... 11
Tekenschema zonder grafiek ............................................................................................................. 11
Overzicht ............................................................................................................................................ 11
Even en oneven functies ............................................................................................................................. 12
Voorbeeld ............................................................................................................................................... 12
Punt- en lijnsymmetrie ........................................................................................................................... 14
Voorbeeld lijnsymmetrie ................................................................................................................... 14
Voorbeeld puntsymmetrie................................................................................................................. 14
Verschillende soorten ................................................................................................................................. 15
Oefening ............................................................................................................................................ 15
Veeltermfuncties .............................................................................................................................................. 16
Definitie van een veelterm .......................................................................................................................... 16
Nulwaarden ................................................................................................................................................. 16
Ontbindingstechnieken ............................................................................................................................... 17
Regel van Horner .................................................................................................................................... 17
Voorbeeld A ....................................................................................................................................... 17
Stappenplan regel van Horner ........................................................................................................... 17
Voorbeeld B ....................................................................................................................................... 18
Discriminant ........................................................................................................................................... 19
Gemeenschappelijke factor .................................................................................................................... 19
Afgeleide van een veeltermfunctie ............................................................................................................. 20
Voorbeeld ............................................................................................................................................... 20
Rekenregels afgeleiden ............................................................................................................................... 20
Veelvoud ................................................................................................................................................. 20
Som ......................................................................................................................................................... 20
Verschil ................................................................................................................................................... 20
Product ................................................................................................................................................... 20
Quotiënt ................................................................................................................................................. 20
Uitbreiding .............................................................................................................................................. 20
Oefeningen .................................................................................................................................................. 21
Het differentiequotiënt ............................................................................................................................... 22
Voorbeeld ............................................................................................................................................... 22
De afgeleide van een veeltermfunctie en de helling van de grafiek in een punt ........................................ 23
Verloop van een veeltermfunctie................................................................................................................ 23
1
, Voorbeeld ............................................................................................................................................... 23
a) Domein van de functie ................................................................................................................... 23
b) Nulwaarden van de functie ........................................................................................................... 23
c) Nulwaarden van de afgeleide functie ............................................................................................ 24
d) Tekenschema van de afgeleide functie ......................................................................................... 24
e) Stijgen en dalen van de functie...................................................................................................... 24
Oefening ................................................................................................................................................. 25
a) Domein van de functie ................................................................................................................... 25
b) Nulwaarden van de functie ........................................................................................................... 25
c) Nulwaarden van de afgeleide functie ............................................................................................ 25
d) Tekenschema van de afgeleide functie ......................................................................................... 25
e) Stijgen en dalen van de functie...................................................................................................... 25
Toepassingen van het begrip afgeleide in domeinen buiten de wiskunde ................................................. 26
Plaatsfunctie ........................................................................................................................................... 26
Snelheidsfunctie ..................................................................................................................................... 26
Versnellingsfunctie ................................................................................................................................. 26
Voorbeeld A ....................................................................................................................................... 26
Voorbeeld B ....................................................................................................................................... 26
Extremawaarden en het stijgen en dalen ................................................................................................... 27
Vraagstukken .......................................................................................................................................... 27
Voorbeeld .......................................................................................................................................... 27
Werkschema ...................................................................................................................................... 28
a) Wiskundige formulering van het probleem .............................................................................. 28
b) Extremalisatie van f .................................................................................................................. 28
c) Antwoord en controle ............................................................................................................... 28
Exponentiële en logaritmische functies ............................................................................................................ 29
Machten met natuurlijke exponenten ........................................................................................................ 29
Definitie .................................................................................................................................................. 29
Rekenregels ............................................................................................................................................ 29
Voorbeeld ............................................................................................................................................... 29
Machten met gehele exponenten ............................................................................................................... 30
Definitie .................................................................................................................................................. 30
Rekenregels ............................................................................................................................................ 30
Machten met rationale exponenten ........................................................................................................... 30
Voorbeeld ............................................................................................................................................... 30
N-de machtswortels .................................................................................................................................... 30
Voorbeeld ............................................................................................................................................... 30
Rekenregels ............................................................................................................................................ 30
De exponentiële functie .............................................................................................................................. 31
Definitie .................................................................................................................................................. 31
Logaritmische functie .................................................................................................................................. 31
Voorbeeld ............................................................................................................................................... 31
Definitie .................................................................................................................................................. 32
Rekenregels ............................................................................................................................................ 32
Overgang naar andere grondtallen ........................................................................................................ 33
Voorbeeldoefeningen ........................................................................................................................ 33
Voorkennis .................................................................................................................................................. 34
Lineaire en exponentiële groei .................................................................................................................... 35
Exponentiële vergelijkingen ........................................................................................................................ 36
Verband tussen exponentiële en logaritmische functie .............................................................................. 37
Goniometrische functies................................................................................................................................... 38
Hoeken in graden en radialen ..................................................................................................................... 38
De grondbegrippen van hoeken ............................................................................................................. 38
Definitie van een hoek ....................................................................................................................... 38
De goniometrische cirkel ................................................................................................................... 38
De radiaal ........................................................................................................................................... 38
2
, Verwante hoeken en hun goniometrische getallen .................................................................................... 39
Sinus en cosinus...................................................................................................................................... 39
Tangens en cotangens ............................................................................................................................ 39
Tekens en bijzondere waarden van de goniometrische getallen ........................................................... 39
Bijzondere hoeken .................................................................................................................................. 39
Verwante hoeken ................................................................................................................................... 40
De goniometrische functies ........................................................................................................................ 40
Periodieke functies ................................................................................................................................. 40
Voorbeeld .......................................................................................................................................... 40
De sinusfunctie ....................................................................................................................................... 41
De algemene sinusfunctie ...................................................................................................................... 41
Definitie ............................................................................................................................................. 41
Goniometrische vergelijkingen.................................................................................................................... 43
Elementaire goniometrische vergelijkingen ........................................................................................... 43
Statistiek ...................................................................................................................................................... 44
Definitie, gemiddelde, mediaan en modus ....................................................................................................... 44
Definitie ....................................................................................................................................................... 44
Gemiddelde ................................................................................................................................................. 45
Mediaan ...................................................................................................................................................... 45
Modus ......................................................................................................................................................... 46
Soorten variabelen ........................................................................................................................................... 47
Kwalitatieve en kwantitatieve variabelen ................................................................................................... 47
Discrete en continue variabelen ................................................................................................................. 48
Meetniveaus: nominaal, ordinaal .................................................................................................................... 48
Nominaal niveau ......................................................................................................................................... 48
Ordinaal niveau ........................................................................................................................................... 49
Steekproef en populatie ................................................................................................................................... 49
Populatie ..................................................................................................................................................... 49
Steekproef ................................................................................................................................................... 49
Centrummaten en spreidingsmaten................................................................................................................. 50
Centrummaten ............................................................................................................................................ 50
Gemiddelde ............................................................................................................................................ 50
Mediaan.................................................................................................................................................. 50
Modus..................................................................................................................................................... 51
Spreidingsmaten ......................................................................................................................................... 51
Variantie ................................................................................................................................................. 51
Standaardafwijking ................................................................................................................................. 52
Normaalverdeling ............................................................................................................................................ 53
Normale dichtheidsfuncties en de standaardnormale verdeling ..................................................................... 54
De standaardnormale verdeling .................................................................................................................. 54
De normale dichtheidsfunctie ..................................................................................................................... 54
Voorbeeld ............................................................................................................................................... 55
Samenvatting .............................................................................................................................................. 55
Opmerking .............................................................................................................................................. 55
Normale verdelingen vergelijken ..................................................................................................................... 56
Voorbeeld .................................................................................................................................................... 56
Relatieve frequentie en kans ............................................................................................................................ 57
Uitdaging ..................................................................................................................................................... 57
Absolute, totale en relatieve frequentie ..................................................................................................... 57
Absolute frequentie................................................................................................................................ 57
Totale frequentie .................................................................................................................................... 57
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller annav1. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $16.84. You're not tied to anything after your purchase.