100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
MKT317 EXAM 2 READING Q-S QUESTIONS WITH COMPLETE ANSWERS $13.49   Add to cart

Exam (elaborations)

MKT317 EXAM 2 READING Q-S QUESTIONS WITH COMPLETE ANSWERS

 1 view  0 purchase
  • Course
  • HOM
  • Institution
  • HOM

MKT317 EXAM 2 READING Q-S QUESTIONS WITH COMPLETE ANSWERS

Preview 3 out of 19  pages

  • November 2, 2024
  • 19
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • HOM
  • HOM
avatar-seller
LucieLucky
MKT317 EXAM 2 READING Q'S
QUESTIONS WITH COMPLETE
ANSWERS

Suppose ccwe cccreated cca ccmultiple cclinear ccregression ccmodel ccusing ccthe ccvariable
cclocation cc(the cclocation ccis cceither ccNORTH ccor ccSOUTH, ccand ccthey ccare ccincluded
ccin ccthe ccmodel ccin ccdummy ccvariable ccformat).
The ccmodel ccwe ccobtained ccis
Estimated ccaverage ccselling ccprice cc(in ccthousands ccof ccdollars) cc= cc13.9 cc+
cc0.07(size, ccin ccsqft) cc+ cc2(SOUTH)
Use ccthe ccmodel ccto cccompute ccthe ccestimated ccaverage ccselling ccprice ccof cca cc2000
ccsquare ccfoot cchouse ccthat ccis ccin ccthe ccSOUTH cclocation. cc- ccAnswer cc155.9
ccthousand ccdollars


Suppose ccwe cccreated cca ccmultiple cclinear ccregression ccmodel ccusing ccthe ccvariable
cclocation cc(the cclocation ccis cceither ccNORTH ccor ccSOUTH, ccand ccthey ccare ccincluded
ccin ccthe ccmodel ccin ccdummy ccvariable ccformat).
The ccmodel ccwe ccobtained ccis
Estimated ccaverage ccselling ccprice cc(in ccthousands ccof ccdollars) cc= cc13.9 cc+
cc0.07(size, ccin ccsqft) cc+ cc2(SOUTH)
Use ccthe ccmodel ccto cccompute ccthe ccestimated ccaverage ccselling ccprice ccof cca cc2000
ccsquare ccfoot cchouse ccthat ccis ccin ccthe ccNORTH cclocation. cc- ccAnswer cc153.9
ccthousand ccdollars


Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(as.factor(Spending) cc~ ccas.factor(FICO) cc+ ccas.factor(Years) cc+
ccas.factor(AgeGroup) cc+ ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccAgeGroup cc+ ccSegment,
ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

,Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccas.factor(AgeGroup) cc+
ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccYes cc- ccthis ccwill cccreate ccthe ccdesired ccmodel.

Using ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired cclinear
ccregression ccmodel?
Model cc<- cclm(as.factor(Spending) cc~ ccFICO cc+ ccYears cc+ ccas.factor(AgeGroup) cc+
ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

7. ccUsing ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired
cclinear ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccAgeGroup cc+ ccas.factor(Segment),
ccdata=DF)
summary(Model) cc- ccAnswer ccYes cc- ccthis ccwill cccreate ccthe ccdesired ccmodel.

8. ccUsing ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired
cclinear ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccas.factor(FICO) cc+ ccYears cc+ ccas.factor(AgeGroup) cc+
ccas.factor(Segment), ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

9. ccUsing ccthe ccdata ccabove, ccwill ccthe cccommands ccbelow cccreate ccthe ccdesired
cclinear ccregression ccmodel?
Model cc<- cclm(Spending cc~ ccFICO cc+ ccYears cc+ ccas.factor(AgeGroup) cc+ ccSegment,
ccdata=DF)
summary(Model) cc- ccAnswer ccNo cc- ccthis ccwill ccnot cccreate ccthe ccdesired ccmodel.

Since ccthe ccaverage ccprice ccof cca cccolor ccJ ccdiamond ccis cchigher ccthan ccthe
ccaverage ccprice ccof cca cccolor ccD ccdiamond, ccit ccmeans ccthat ccthe ccpeople ccare
ccwilling ccto ccpay ccfor ccmore ccdiamonds ccthat ccare cccolor ccJ ccthan cccolor ccD cc- cccolor
ccJ ccis ccthe ccmore ccdesired cccolor. cc- ccAnswer ccfalse


Since cccolor ccD ccdiamonds ccappear ccto ccbe ccmore ccexpensive cconce ccwe cchave
ccaccounted ccfor ccthe ccsize, ccbut ccthe ccaverage ccprice ccof cca cccolor ccJ ccdiamond ccis
cchighest ccoverall, ccit's cclikely ccthat ccamong ccdiamonds ccincluded ccin ccthe ccdata ccset,
ccthere ccare ccmany cclarge cc(and cctherefore ccexpensive) cccolor ccJ ccdiamonds, ccand
ccmany ccsmall cc(and cctherefore ccless ccexpensive) cccolor ccD ccdiamonds. cc- ccAnswer
cctrue


In ccthe ccfirst ccscatter ccplot, ccthe ccprice ccaxis cclabels ccthe ccvalues cc300, cc1000,
cc3000, cc10000, cc30000. ccIs ccprice ccbeing ccgraphed ccusing ccthe cclinear ccscale ccor
ccthe cclog ccscale? cc- ccAnswer cclog ccscale

, Overall cc(not ccaccounting ccfor ccagency), ccthe ccpredicted ccprice ccof cca cc2000 ccsquare
ccfoot cchouse ccis cc- ccAnswer ccThe ccmodel cccreated ccin ccthis ccsection, ccwhich ccwas
cccreated ccusing ccthe ccR cccommands ccModel cc<- cclm(PRICE cc~ ccSIZE cc+
ccas.factor(AGENCY), ccdata=HOUSEDATA), ccdoes ccnot ccgive ccus ccenough
ccinformation ccto ccanswer ccthis ccquestion.


explanation cc: ccThe ccmodel ccthat ccwas ccgiven ccaccounts ccfor ccAgency, ccand ccall
ccinterpretations ccand cccomputations ccwill ccaccount ccfor ccAgency. ccIf ccwe ccdon't ccwant
ccto ccaccount ccfor ccagency cc(and cconly ccsquare ccfootage), ccthen ccwe ccneed ccto
ccmake cca ccnew ccmodel ccwhere ccthe cconly ccx-variable ccis ccSIZE; ccthe cccurrent
ccmodel ccdoes ccnot ccprovide ccenough ccinformation ccto ccmake ccthe ccdesired
cccalculation.


True ccor ccFalse: ccThe ccaverage ccselling ccprice ccfor cchomes ccsold ccby ccAgency cc2 ccis
ccabout cc18.72 ccthousand ccdollars ccless ccthan ccthe ccaverage ccselling ccprice ccof
cchomes ccsold ccby ccAgency cc1. cc- ccAnswer ccfalse,
ccThe cc18.72 cccame ccfrom cca ccmodel ccthat ccincludes ccSIZE, ccso ccthe ccinterpretation
ccmust ccinclude cc"among cchomes ccof ccthe ccsame ccsize"


True ccor ccFalse: ccWhen cccomparing cchomes ccof ccthe ccsame ccsize, ccif cca cchouse ccis
ccsold ccby ccAgency cc4, ccthe ccaverage ccprice ccdecreases ccabout cc17.39 ccthousand
ccdollars. cc- ccAnswer ccfalse


How ccdo ccwe ccknow ccthat ccthis ccmodel ccwas ccconstructed ccincorrectly? cc- ccAnswer
ccbThis ccmodel ccis ccincorrect ccbecause ccthe ccoutput ccdoes ccnot ccinclude ccdummy
ccvariables; ccthe ccclassmate ccshould cchave ccused ccas.factor(AGENCY).


Create ccthe ccmultiple cclinear ccregression ccmodel ccwhere ccthe ccindependent ccvariables
ccare ccSIZE, ccTRAIN.DIST, ccand ccthree ccof ccthe ccfour ccdummy ccvariables ccassociated
ccwith ccAGENCY. ccWhat ccpercentage ccof ccthe ccvariation ccin ccprice ccis ccexplained ccby
ccthe ccvariables ccSIZE, ccTRAIN.DIST, ccand ccAGENCY? ccIn ccother ccwords, ccwhat ccis
ccthe ccMultiple ccR-squared ccof ccthis ccmodel cc(as ccshown ccat ccthe ccbottom ccof ccthe
ccsummary ccoutput)? cc- ccAnswer cc0.9460


When cccomparing cchomes ccof ccthe ccsame ccsize ccand ccsame ccdistance ccfrom ccthe
cctrain, ccwhat cccan ccwe ccsay ccabout ccthe ccdifference ccin ccaverage ccprices ccbetween
ccthe ccNorth ccand ccthe ccSouth? cc- ccAnswer ccWhen cccomparing cchomes ccof ccthe
ccsame ccsize ccand ccsame ccdistance ccfrom ccthe cctrain, ccthere ccis ccnot cca ccsignificant
ccdifference ccin ccaverage ccprice ccbetween cchomes ccin ccthe ccNorth ccand ccthe ccSouth.


Above, ccwe cccreated ccthe ccmodel: ccLOCATIONModel cc<- cclm(PRICE cc~ ccLOCATION,
ccdata=HOUSEDATA)
What cccan ccwe ccinterpret ccfrom ccthe ccoutput ccfrom ccthis ccmodel? cc(ignore ccoutput
ccfrom ccall ccprevious ccmodels) cc- ccAnswer ccWhen ccnot ccaccounting ccfor ccany ccother
ccpiece ccof ccinformation ccabout cchomes, ccthe ccaverage ccselling ccprice ccof cchouses ccin

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller LucieLucky. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $13.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67866 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$13.49
  • (0)
  Add to cart