SOLUTIONS MANUAL FOR HEAT
AND MASS TRANSFER
FUNDAMENTALS AND
APPLICATIONS 5TH EDITION
CENGEL
,Heat and Mass Transfer Fundamentals and Applications 5th Edition Cengel Solutions Manual
2-1
Solutions Manual
for
Heat and Mass Transfer: Fundamentals & Applications
5th Edition
Yunus A. Cengel & Afshin J. Ghajar
McGraw-Hill, 2015
Chapter 2
HEAT CONDUCTION EQUATION
PROPRIETARY AND CONFIDENTIAL
This Manual is the proprietary property of The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and
protected by copyright and other state and federal laws. By opening and using this Manual the user
agrees to the following restrictions, and if the recipient does not agree to these restrictions, the Manual
should be promptly returned unopened to McGraw-Hill: This Manual is being provided only to
authorized professors and instructors for use in preparing for the classes using the affiliated
textbook. No other use or distribution of this Manual is permitted. This Manual may not be sold
and may not be distributed to or used by any student or other third party. No part of this Manual
may be reproduced, displayed or distributed in any form or by any means, electronic or otherwise,
without the prior written permission of McGraw-Hill.
PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course
preparation. If you are a student using this Manual, you are using it without permission.
Visit TestBankDeal.com to get complete for all chapters
, 2-2
Introduction
2-1C The term steady implies no change with time at any point within the medium while transient implies variation with
time or time dependence. Therefore, the temperature or heat flux remains unchanged with time during steady heat transfer
through a medium at any location although both quantities may vary from one location to another. During transient heat
transfer, the temperature and heat flux may vary with time as well as location. Heat transfer is one-dimensional if it occurs
primarily in one direction. It is two-dimensional if heat tranfer in the third dimension is negligible.
2-2C Heat transfer is a vector quantity since it has direction as well as magnitude. Therefore, we must specify both direction
and magnitude in order to describe heat transfer completely at a point. Temperature, on the other hand, is a scalar quantity.
2-3C Yes, the heat flux vector at a point P on an isothermal surface of a medium has to be perpendicular to the surface at that
point.
2-4C Isotropic materials have the same properties in all directions, and we do not need to be concerned about the variation of
properties with direction for such materials. The properties of anisotropic materials such as the fibrous or composite
materials, however, may change with direction.
2-5C In heat conduction analysis, the conversion of electrical, chemical, or nuclear energy into heat (or thermal) energy in
solids is called heat generation.
2-6C The phrase “thermal energy generation” is equivalent to “heat generation,” and they are used interchangeably. They
imply the conversion of some other form of energy into thermal energy. The phrase “energy generation,” however, is vague
since the form of energy generated is not clear.
2-7C The heat transfer process from the kitchen air to the refrigerated space is
transient in nature since the thermal conditions in the kitchen and the refrigerator,
in general, change with time. However, we would analyze this problem as a
steady heat transfer problem under the worst anticipated conditions such as the
lowest thermostat setting for the refrigerated space, and the anticipated highest
temperature in the kitchen (the so-called design conditions). If the compressor is
large enough to keep the refrigerated space at the desired temperature setting
under the presumed worst conditions, then it is large enough to do so under all
conditions by cycling on and off. Heat transfer into the refrigerated space is
three-dimensional in nature since heat will be entering through all six sides of the
refrigerator. However, heat transfer through any wall or floor takes place in the
direction normal to the surface, and thus it can be analyzed as being one-
dimensional. Therefore, this problem can be simplified greatly by considering the
heat transfer to be onedimensional at each of the four sides as well as the top and
bottom sections, and then by adding the calculated values of heat transfer at each
surface.
PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course
preparation. If you are a student using this Manual, you are using it without permission.
, 2-3
2-8C Heat transfer through the walls, door, and the top and bottom sections of an oven is transient in nature since the thermal
conditions in the kitchen and the oven, in general, change with time. However, we would analyze this problem as a steady
heat transfer problem under the worst anticipated conditions such as the highest temperature setting for the oven, and the
anticipated lowest temperature in the kitchen (the so called “design” conditions). If the heating element of the oven is large
enough to keep the oven at the desired temperature setting under the presumed worst conditions, then it is large enough to do
so under all conditions by cycling on and off.
Heat transfer from the oven is three-dimensional in nature since heat will be entering through all six sides of the
oven. However, heat transfer through any wall or floor takes place in the direction normal to the surface, and thus it can be
analyzed as being one-dimensional. Therefore, this problem can be simplified greatly by considering the heat transfer as being
one- dimensional at each of the four sides as well as the top and bottom sections, and then by adding the calculated values of
heat transfers at each surface.
2-9C Heat transfer to a potato in an oven can be modeled as one-dimensional since temperature differences (and thus heat
transfer) will exist in the radial direction only because of symmetry about the center point. This would be a transient heat
transfer process since the temperature at any point within the potato will change with time during cooking. Also, we would
use the spherical coordinate system to solve this problem since the entire outer surface of a spherical body can be described
by a constant value of the radius in spherical coordinates. We would place the origin at the center of the potato.
2-10C Assuming the egg to be round, heat transfer to an egg in boiling water can be modeled as one-dimensional since
temperature differences (and thus heat transfer) will primarily exist in the radial direction only because of symmetry about the
center point. This would be a transient heat transfer process since the temperature at any point within the egg will change
with time during cooking. Also, we would use the spherical coordinate system to solve this problem since the entire outer
surface of a spherical body can be described by a constant value of the radius in spherical coordinates. We would place the
origin at the center of the egg.
2-11C Heat transfer to a hot dog can be modeled as two-dimensional since temperature differences (and thus heat transfer)
will exist in the radial and axial directions (but there will be symmetry about the center line and no heat transfer in the
azimuthal direction. This would be a transient heat transfer process since the temperature at any point within the hot dog will
change with time during cooking. Also, we would use the cylindrical coordinate system to solve this problem since a cylinder
is best described in cylindrical coordinates. Also, we would place the origin somewhere on the center line, possibly at the
center of the hot dog. Heat transfer in a very long hot dog could be considered to be one-dimensional in preliminary
calculations.
2-12C Heat transfer to a roast beef in an oven would be transient since the temperature at any point within the roast will
change with time during cooking. Also, by approximating the roast as a spherical object, this heat transfer process can be
modeled as one-dimensional since temperature differences (and thus heat transfer) will primarily exist in the radial direction
because of symmetry about the center point.
2-13C Heat loss from a hot water tank in a house to the surrounding medium can be considered to be a steady heat transfer
problem. Also, it can be considered to be two-dimensional since temperature differences (and thus heat transfer) will exist in
the radial and axial directions (but there will be symmetry about the center line and no heat transfer in the azimuthal
direction.)
PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course
preparation. If you are a student using this Manual, you are using it without permission.